BiFeO3 薄膜中电荷传输和光伏效应的缺陷工程学

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alfredo Blázquez Martínez, Barnik Mandal, Sebastjan Glinsek, Torsten Granzow
{"title":"BiFeO3 薄膜中电荷传输和光伏效应的缺陷工程学","authors":"Alfredo Blázquez Martínez, Barnik Mandal, Sebastjan Glinsek, Torsten Granzow","doi":"10.1016/j.actamat.2024.120481","DOIUrl":null,"url":null,"abstract":"Bismuth ferrite (BiFeO<sub>3</sub>) is an attractive multiferroic material, extensively explored in photoferroelectric investigations. However, its applications are hindered by the high leakage current, requiring precise control of charge transport properties. Defect engineering has emerged as a promising strategy to address this issue: controlling the defect chemistry, particularly oxygen vacancies, is key to tuning the electrical properties. This study investigates the influence of 5% <figure><img alt=\"\" height=\"11\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1001.jpg\"/></figure> - and 2% <figure><img alt=\"\" height=\"11\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1002.jpg\"/></figure> -doping on the dark and light-induced charge transport properties of polycrystalline BiFeO<sub>3</sub> films. Our results demonstrate that <figure><img alt=\"\" height=\"11\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1003.jpg\"/></figure> reduces dark conductivity by decreasing oxygen vacancy concentration with no change in the physical nature of the charge transport mechanism. In contrast, <figure><img alt=\"\" height=\"11\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1004.jpg\"/></figure> modifies the charge transport mechanism, increasing low-field (E <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo is=\"true\"&gt;&amp;lt;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.625ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -598.2 778.5 699.5\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-3C\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">&lt;</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">&lt;</mo></math></script></span> 100 kVcm<sup>-1</sup>) dark conductivity while drastically reducing high-field (E <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo is=\"true\"&gt;&amp;gt;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.625ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -598.2 778.5 699.5\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-3E\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">&gt;</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">&gt;</mo></math></script></span> 250 kVcm<sup>-1</sup>) dark conductivity. This tuning of the defect chemistry is also key to enhance the photovoltages of the bulk photovoltaic effect in BiFeO<sub>3</sub>. High photoinduced electric fields up to 7 kVcm<sup>-1</sup> and low photoconductivity values are obtained with <figure><img alt=\"\" height=\"11\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1005.jpg\"/></figure> -doping, while high short-circuit photocurrent values are obtained with <figure><img alt=\"\" height=\"11\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1006.jpg\"/></figure> -doping.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect engineering of charge transport and photovoltaic effect in BiFeO3 films\",\"authors\":\"Alfredo Blázquez Martínez, Barnik Mandal, Sebastjan Glinsek, Torsten Granzow\",\"doi\":\"10.1016/j.actamat.2024.120481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth ferrite (BiFeO<sub>3</sub>) is an attractive multiferroic material, extensively explored in photoferroelectric investigations. However, its applications are hindered by the high leakage current, requiring precise control of charge transport properties. Defect engineering has emerged as a promising strategy to address this issue: controlling the defect chemistry, particularly oxygen vacancies, is key to tuning the electrical properties. This study investigates the influence of 5% <figure><img alt=\\\"\\\" height=\\\"11\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1001.jpg\\\"/></figure> - and 2% <figure><img alt=\\\"\\\" height=\\\"11\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1002.jpg\\\"/></figure> -doping on the dark and light-induced charge transport properties of polycrystalline BiFeO<sub>3</sub> films. Our results demonstrate that <figure><img alt=\\\"\\\" height=\\\"11\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1003.jpg\\\"/></figure> reduces dark conductivity by decreasing oxygen vacancy concentration with no change in the physical nature of the charge transport mechanism. In contrast, <figure><img alt=\\\"\\\" height=\\\"11\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1004.jpg\\\"/></figure> modifies the charge transport mechanism, increasing low-field (E <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;lt;&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.625ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -598.2 778.5 699.5\\\" width=\\\"1.808ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-3C\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo is=\\\"true\\\">&lt;</mo></math></span></span><script type=\\\"math/mml\\\"><math><mo is=\\\"true\\\">&lt;</mo></math></script></span> 100 kVcm<sup>-1</sup>) dark conductivity while drastically reducing high-field (E <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;gt;&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.625ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -598.2 778.5 699.5\\\" width=\\\"1.808ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-3E\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo is=\\\"true\\\">&gt;</mo></math></span></span><script type=\\\"math/mml\\\"><math><mo is=\\\"true\\\">&gt;</mo></math></script></span> 250 kVcm<sup>-1</sup>) dark conductivity. This tuning of the defect chemistry is also key to enhance the photovoltages of the bulk photovoltaic effect in BiFeO<sub>3</sub>. High photoinduced electric fields up to 7 kVcm<sup>-1</sup> and low photoconductivity values are obtained with <figure><img alt=\\\"\\\" height=\\\"11\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1005.jpg\\\"/></figure> -doping, while high short-circuit photocurrent values are obtained with <figure><img alt=\\\"\\\" height=\\\"11\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S1359645424008309-fx1006.jpg\\\"/></figure> -doping.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120481\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120481","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁氧体铋(BiFeO3)是一种极具吸引力的多铁性材料,在光铁电研究中得到了广泛应用。然而,它的应用受到高漏电流的阻碍,需要对电荷传输特性进行精确控制。缺陷工程已成为解决这一问题的可行策略:控制缺陷化学,尤其是氧空位,是调整电学特性的关键。本研究调查了 5% 和 2% 掺杂对多晶 BiFeO3 薄膜暗电荷和光电荷传输特性的影响。我们的研究结果表明,通过降低氧空位浓度可以降低暗电导率,但电荷传输机制的物理本质没有改变。相反,改变电荷传输机制可提高低电场(E << 100 kVcm-1)暗电导率,同时大幅降低高电场(E >> 250 kVcm-1)暗电导率。这种缺陷化学性质的调整也是提高 BiFeO3 体光伏效应光电电压的关键。通过-掺杂,可获得高达 7 kVcm-1 的高光诱导电场和较低的光导率值,而通过-掺杂,可获得较高的短路光电流值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Defect engineering of charge transport and photovoltaic effect in BiFeO3 films

Defect engineering of charge transport and photovoltaic effect in BiFeO3 films
Bismuth ferrite (BiFeO3) is an attractive multiferroic material, extensively explored in photoferroelectric investigations. However, its applications are hindered by the high leakage current, requiring precise control of charge transport properties. Defect engineering has emerged as a promising strategy to address this issue: controlling the defect chemistry, particularly oxygen vacancies, is key to tuning the electrical properties. This study investigates the influence of 5%
- and 2%
-doping on the dark and light-induced charge transport properties of polycrystalline BiFeO3 films. Our results demonstrate that
reduces dark conductivity by decreasing oxygen vacancy concentration with no change in the physical nature of the charge transport mechanism. In contrast,
modifies the charge transport mechanism, increasing low-field (E < 100 kVcm-1) dark conductivity while drastically reducing high-field (E > 250 kVcm-1) dark conductivity. This tuning of the defect chemistry is also key to enhance the photovoltages of the bulk photovoltaic effect in BiFeO3. High photoinduced electric fields up to 7 kVcm-1 and low photoconductivity values are obtained with
-doping, while high short-circuit photocurrent values are obtained with
-doping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信