Dana Maureen Hebchen , Tim Schader , Manuela Spaeth , Niklas Müller , Johannes Graumann , Katrin Schröder
{"title":"NoxO1 通过与 Erbin 的相互作用调节表皮生长因子受体的信号转导。","authors":"Dana Maureen Hebchen , Tim Schader , Manuela Spaeth , Niklas Müller , Johannes Graumann , Katrin Schröder","doi":"10.1016/j.redox.2024.103396","DOIUrl":null,"url":null,"abstract":"<div><div>NADPH oxidase organizer 1 (NoxO1) is a scaffold cytoplasmic subunit of the reactive oxygen species (ROS) forming Nox1 complex and involved in angiogenesis, differentiation, and atherosclerosis.</div><div>We found that overexpression of NoxO1 without simultaneous overexpression of any other component of the active Nox1 complex inhibited EGF-induced wound closure and signaling, while NoxO1 KO yielded the opposite effect. Accordingly, we hypothesize NoxO1 to exert Nox1 independent functions.</div><div>Using the <em>BioID</em> technique, we identified ErbB2 interacting protein (Erbin) as novel interaction partner of NoxO1. Colocalization of NoxO1 with EGFR, as well as with Erbin validated this finding. EGF treatment interrupted colocalization of NoxO1 and EGFR. EGF mediated kinase activation was delayed in NoxO1 overexpressing cells, while knockout of NoxO1 had the opposite effect.</div><div>In conclusion, Erbin was identified as a novel NoxO1 interacting protein. Through the subsequent interaction of NoxO1 and EGFR, NoxO1 interferes with EGF signaling. The results of this study suggest a potential role of NoxO1 as an adaptor protein with functions beyond the well-established enabling of Nox1 mediated ROS formation.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"77 ","pages":"Article 103396"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NoxO1 regulates EGFR signaling by its interaction with Erbin\",\"authors\":\"Dana Maureen Hebchen , Tim Schader , Manuela Spaeth , Niklas Müller , Johannes Graumann , Katrin Schröder\",\"doi\":\"10.1016/j.redox.2024.103396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>NADPH oxidase organizer 1 (NoxO1) is a scaffold cytoplasmic subunit of the reactive oxygen species (ROS) forming Nox1 complex and involved in angiogenesis, differentiation, and atherosclerosis.</div><div>We found that overexpression of NoxO1 without simultaneous overexpression of any other component of the active Nox1 complex inhibited EGF-induced wound closure and signaling, while NoxO1 KO yielded the opposite effect. Accordingly, we hypothesize NoxO1 to exert Nox1 independent functions.</div><div>Using the <em>BioID</em> technique, we identified ErbB2 interacting protein (Erbin) as novel interaction partner of NoxO1. Colocalization of NoxO1 with EGFR, as well as with Erbin validated this finding. EGF treatment interrupted colocalization of NoxO1 and EGFR. EGF mediated kinase activation was delayed in NoxO1 overexpressing cells, while knockout of NoxO1 had the opposite effect.</div><div>In conclusion, Erbin was identified as a novel NoxO1 interacting protein. Through the subsequent interaction of NoxO1 and EGFR, NoxO1 interferes with EGF signaling. The results of this study suggest a potential role of NoxO1 as an adaptor protein with functions beyond the well-established enabling of Nox1 mediated ROS formation.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"77 \",\"pages\":\"Article 103396\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724003744\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724003744","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NoxO1 regulates EGFR signaling by its interaction with Erbin
NADPH oxidase organizer 1 (NoxO1) is a scaffold cytoplasmic subunit of the reactive oxygen species (ROS) forming Nox1 complex and involved in angiogenesis, differentiation, and atherosclerosis.
We found that overexpression of NoxO1 without simultaneous overexpression of any other component of the active Nox1 complex inhibited EGF-induced wound closure and signaling, while NoxO1 KO yielded the opposite effect. Accordingly, we hypothesize NoxO1 to exert Nox1 independent functions.
Using the BioID technique, we identified ErbB2 interacting protein (Erbin) as novel interaction partner of NoxO1. Colocalization of NoxO1 with EGFR, as well as with Erbin validated this finding. EGF treatment interrupted colocalization of NoxO1 and EGFR. EGF mediated kinase activation was delayed in NoxO1 overexpressing cells, while knockout of NoxO1 had the opposite effect.
In conclusion, Erbin was identified as a novel NoxO1 interacting protein. Through the subsequent interaction of NoxO1 and EGFR, NoxO1 interferes with EGF signaling. The results of this study suggest a potential role of NoxO1 as an adaptor protein with functions beyond the well-established enabling of Nox1 mediated ROS formation.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.