用于种系变异致病性分类的深度学习模型的表型评估

IF 6.8 1区 医学 Q1 ONCOLOGY
Ryan D. Chow, Katherine L. Nathanson, Ravi B. Parikh
{"title":"用于种系变异致病性分类的深度学习模型的表型评估","authors":"Ryan D. Chow, Katherine L. Nathanson, Ravi B. Parikh","doi":"10.1038/s41698-024-00710-x","DOIUrl":null,"url":null,"abstract":"Deep learning models for predicting variant pathogenicity have not been thoroughly evaluated on real-world clinical phenotypes. Here, we apply state-of-the-art pathogenicity prediction models to hereditary breast cancer gene variants in UK Biobank participants. Model predictions for missense variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with breast cancer risk. However, deep learning models had limited clinical utility when specifically applied to variants of uncertain significance.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-7"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00710-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Phenotypic evaluation of deep learning models for classifying germline variant pathogenicity\",\"authors\":\"Ryan D. Chow, Katherine L. Nathanson, Ravi B. Parikh\",\"doi\":\"10.1038/s41698-024-00710-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models for predicting variant pathogenicity have not been thoroughly evaluated on real-world clinical phenotypes. Here, we apply state-of-the-art pathogenicity prediction models to hereditary breast cancer gene variants in UK Biobank participants. Model predictions for missense variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with breast cancer risk. However, deep learning models had limited clinical utility when specifically applied to variants of uncertain significance.\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41698-024-00710-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41698-024-00710-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00710-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用于预测变体致病性的深度学习模型尚未在真实世界的临床表型上得到全面评估。在此,我们将最先进的致病性预测模型应用于英国生物库参与者中的遗传性乳腺癌基因变异。模型预测 BRCA1、BRCA2 和 PALB2 中的错义变异与乳腺癌风险有关,而 ATM 和 CHEK2 中的错义变异与乳腺癌风险无关。但是,当深度学习模型具体应用于意义不确定的变异时,其临床实用性有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phenotypic evaluation of deep learning models for classifying germline variant pathogenicity

Phenotypic evaluation of deep learning models for classifying germline variant pathogenicity
Deep learning models for predicting variant pathogenicity have not been thoroughly evaluated on real-world clinical phenotypes. Here, we apply state-of-the-art pathogenicity prediction models to hereditary breast cancer gene variants in UK Biobank participants. Model predictions for missense variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with breast cancer risk. However, deep learning models had limited clinical utility when specifically applied to variants of uncertain significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信