累积晶体塑性耗散能量驱动的连续损伤双尺度模型,用于计算摩擦疲劳起始寿命

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuan Fang, Xu Yazhou
{"title":"累积晶体塑性耗散能量驱动的连续损伤双尺度模型,用于计算摩擦疲劳起始寿命","authors":"Yuan Fang, Xu Yazhou","doi":"10.1177/10567895241292749","DOIUrl":null,"url":null,"abstract":"Fretting fatigue often occurs in the interfaces between components, subjected to complex multi-axial load states and high stress gradients at the contact edge region. For the prediction of fretting fatigue crack initiation and in-depth understanding of the crack initiation mechanism, it is essential to investigate the damage mechanisms across various scales and explore the underlying scale coupling mechanisms. By introducing a power-law based scale coupling relationship, a two-scale model of fretting fatigue crack initiation life is proposed by combining macroscopic continuum damage mechanics (CDM) with microscopic crystal plastic finite element method (CPFEM). The simulation results indicate that the predicted fretting fatigue initiation life shows better accuracy than the result predicted by single-scale CDM model. In case of low stress level the rate of accumulated dissipation energy can be clearly divided into two stages with turning points, whereas it exhibits a relatively uniform damage process under high stress level. Moreover, the proposed two-scale model partly provides physical explanation for fretting fatigue crack initiation based on the information from the microscale.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"25 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulated crystal plasticity dissipation energy driven continuum damage two-scale model for fretting fatigue initiation life\",\"authors\":\"Yuan Fang, Xu Yazhou\",\"doi\":\"10.1177/10567895241292749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fretting fatigue often occurs in the interfaces between components, subjected to complex multi-axial load states and high stress gradients at the contact edge region. For the prediction of fretting fatigue crack initiation and in-depth understanding of the crack initiation mechanism, it is essential to investigate the damage mechanisms across various scales and explore the underlying scale coupling mechanisms. By introducing a power-law based scale coupling relationship, a two-scale model of fretting fatigue crack initiation life is proposed by combining macroscopic continuum damage mechanics (CDM) with microscopic crystal plastic finite element method (CPFEM). The simulation results indicate that the predicted fretting fatigue initiation life shows better accuracy than the result predicted by single-scale CDM model. In case of low stress level the rate of accumulated dissipation energy can be clearly divided into two stages with turning points, whereas it exhibits a relatively uniform damage process under high stress level. Moreover, the proposed two-scale model partly provides physical explanation for fretting fatigue crack initiation based on the information from the microscale.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895241292749\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241292749","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的多轴向载荷状态和接触边缘区域的高应力梯度作用下,部件之间的界面经常会产生摩擦疲劳。为了预测摩擦疲劳裂纹的萌生并深入了解裂纹萌生机理,必须研究不同尺度的损伤机理并探索其背后的尺度耦合机制。通过引入基于幂律的尺度耦合关系,结合宏观连续损伤力学(CDM)和微观晶塑有限元法(CPFEM),提出了一种双尺度的摩擦疲劳裂纹萌生寿命模型。仿真结果表明,与单尺度 CDM 模型预测的结果相比,所预测的摩擦疲劳起裂寿命具有更好的准确性。在低应力水平下,累积耗散能量的速率可明显分为两个阶段,并存在转折点;而在高应力水平下,则表现出相对均匀的损伤过程。此外,基于微观尺度的信息,所提出的双尺度模型在一定程度上为摩擦疲劳裂纹的产生提供了物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accumulated crystal plasticity dissipation energy driven continuum damage two-scale model for fretting fatigue initiation life
Fretting fatigue often occurs in the interfaces between components, subjected to complex multi-axial load states and high stress gradients at the contact edge region. For the prediction of fretting fatigue crack initiation and in-depth understanding of the crack initiation mechanism, it is essential to investigate the damage mechanisms across various scales and explore the underlying scale coupling mechanisms. By introducing a power-law based scale coupling relationship, a two-scale model of fretting fatigue crack initiation life is proposed by combining macroscopic continuum damage mechanics (CDM) with microscopic crystal plastic finite element method (CPFEM). The simulation results indicate that the predicted fretting fatigue initiation life shows better accuracy than the result predicted by single-scale CDM model. In case of low stress level the rate of accumulated dissipation energy can be clearly divided into two stages with turning points, whereas it exhibits a relatively uniform damage process under high stress level. Moreover, the proposed two-scale model partly provides physical explanation for fretting fatigue crack initiation based on the information from the microscale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信