用于设备上非侵入式负载监控的轻量级联合学习

IF 8.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yehui Li;Ruiyang Yao;Dalin Qin;Yi Wang
{"title":"用于设备上非侵入式负载监控的轻量级联合学习","authors":"Yehui Li;Ruiyang Yao;Dalin Qin;Yi Wang","doi":"10.1109/TSG.2024.3482363","DOIUrl":null,"url":null,"abstract":"Non-intrusive load monitoring (NILM) is a critical technology for disaggregating appliance-specific energy usage by only observing household-level power consumption. If NILM can be performed on end devices (such as smart meters), it can facilitate electricity demand identification and electricity behavior perception for real-time demand-side energy management. However, implementing high-performance NILM models on end devices presents an unresolved issue, encompassing two primary challenges: hardware resource constraints and data resource paucity on end devices. To this end, this paper proposes a lightweight federated learning approach for on-device NILM by combining neural architecture search (NAS) and federated learning. Firstly, a memory-efficient NAS approach is investigated to determine a personalized model within the resource constraints of end devices. Secondly, a federated mutual learning approach is designed to orchestrate the cooperation of distributed end devices with heterogeneous personalized models in a privacy-preserving manner. Case studies on two real-world datasets verify that the proposed method for appliance-level power disaggregation outperforms conventional methods in accuracy and efficiency.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 2","pages":"1950-1961"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Federated Learning for On-Device Non-Intrusive Load Monitoring\",\"authors\":\"Yehui Li;Ruiyang Yao;Dalin Qin;Yi Wang\",\"doi\":\"10.1109/TSG.2024.3482363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive load monitoring (NILM) is a critical technology for disaggregating appliance-specific energy usage by only observing household-level power consumption. If NILM can be performed on end devices (such as smart meters), it can facilitate electricity demand identification and electricity behavior perception for real-time demand-side energy management. However, implementing high-performance NILM models on end devices presents an unresolved issue, encompassing two primary challenges: hardware resource constraints and data resource paucity on end devices. To this end, this paper proposes a lightweight federated learning approach for on-device NILM by combining neural architecture search (NAS) and federated learning. Firstly, a memory-efficient NAS approach is investigated to determine a personalized model within the resource constraints of end devices. Secondly, a federated mutual learning approach is designed to orchestrate the cooperation of distributed end devices with heterogeneous personalized models in a privacy-preserving manner. Case studies on two real-world datasets verify that the proposed method for appliance-level power disaggregation outperforms conventional methods in accuracy and efficiency.\",\"PeriodicalId\":13331,\"journal\":{\"name\":\"IEEE Transactions on Smart Grid\",\"volume\":\"16 2\",\"pages\":\"1950-1961\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Smart Grid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720908/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720908/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Federated Learning for On-Device Non-Intrusive Load Monitoring
Non-intrusive load monitoring (NILM) is a critical technology for disaggregating appliance-specific energy usage by only observing household-level power consumption. If NILM can be performed on end devices (such as smart meters), it can facilitate electricity demand identification and electricity behavior perception for real-time demand-side energy management. However, implementing high-performance NILM models on end devices presents an unresolved issue, encompassing two primary challenges: hardware resource constraints and data resource paucity on end devices. To this end, this paper proposes a lightweight federated learning approach for on-device NILM by combining neural architecture search (NAS) and federated learning. Firstly, a memory-efficient NAS approach is investigated to determine a personalized model within the resource constraints of end devices. Secondly, a federated mutual learning approach is designed to orchestrate the cooperation of distributed end devices with heterogeneous personalized models in a privacy-preserving manner. Case studies on two real-world datasets verify that the proposed method for appliance-level power disaggregation outperforms conventional methods in accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Smart Grid
IEEE Transactions on Smart Grid ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
22.10
自引率
9.40%
发文量
526
审稿时长
6 months
期刊介绍: The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信