{"title":"通过使 wnt/β-catenin 信号失活,下调短身材同工酶蛋白 2 可抑制体外和体内胃癌细胞的生长和干性","authors":"Xiangyu Chen, Shuai Li, Binghua Sun","doi":"10.1002/ddr.70006","DOIUrl":null,"url":null,"abstract":"<p>Gastric cancer (GC) a prevalent form of cancer globally. Previous research suggests that SHOX2 may have a role in promoting cancer progression. However, the role of SHOX2 in GC is not well understood. Based on data from TCGA_GC data set, SHXO2 levels were examined in normal and GC tissues. Patients in the TCGA_GC cohort were divided into high- and low-SHOX2 level groups for analysis of overall survival (OS), functional enrichment, and immune infiltration. Furthermore, experiments were conducted to investigate the impact of SHOX2 on GC cell function through gain- and loss-of-function experiments. Utilizing data from public databases, SHOX2 mRNA levels were found to be elevated in GC tissues compared to normal control, this finding was confirmed by RT-qPCR, western blot analysis, and immune-histochemical analyses. Elevated SHOX2 levels could serve as an independent indicator of poor prognosis in GC patients. Furthermore, SHOX2 levels had a negative correlation with CD8 T cells and CD4 memory activated T cells, and a positive correlation with of M0 macrophages in GC patients. Functional analyses revealed that SHOX2 deficiency notably suppressed GC cell proliferation, migration, and invasion. Additionally, SHOX2 deficiency was shown to suppress stemness in GC cells in vitro and in vivo via inactivating wnt/β-catenin signaling. Collectively, SHOX2 may serve as a prognostic marker for GC patients, and downregulation of SHOX2 could effectively impede GC cell growth and stemness by inactivating the wnt/β-catenin signaling pathway. These findings underscore the potential of SHOX2 as a promising therapeutic target for GC.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulation of short-stature homeobox protein 2 suppresses gastric cancer cell growth and stemness in vitro and in vivo via inactivating wnt/β-catenin signaling\",\"authors\":\"Xiangyu Chen, Shuai Li, Binghua Sun\",\"doi\":\"10.1002/ddr.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gastric cancer (GC) a prevalent form of cancer globally. Previous research suggests that SHOX2 may have a role in promoting cancer progression. However, the role of SHOX2 in GC is not well understood. Based on data from TCGA_GC data set, SHXO2 levels were examined in normal and GC tissues. Patients in the TCGA_GC cohort were divided into high- and low-SHOX2 level groups for analysis of overall survival (OS), functional enrichment, and immune infiltration. Furthermore, experiments were conducted to investigate the impact of SHOX2 on GC cell function through gain- and loss-of-function experiments. Utilizing data from public databases, SHOX2 mRNA levels were found to be elevated in GC tissues compared to normal control, this finding was confirmed by RT-qPCR, western blot analysis, and immune-histochemical analyses. Elevated SHOX2 levels could serve as an independent indicator of poor prognosis in GC patients. Furthermore, SHOX2 levels had a negative correlation with CD8 T cells and CD4 memory activated T cells, and a positive correlation with of M0 macrophages in GC patients. Functional analyses revealed that SHOX2 deficiency notably suppressed GC cell proliferation, migration, and invasion. Additionally, SHOX2 deficiency was shown to suppress stemness in GC cells in vitro and in vivo via inactivating wnt/β-catenin signaling. Collectively, SHOX2 may serve as a prognostic marker for GC patients, and downregulation of SHOX2 could effectively impede GC cell growth and stemness by inactivating the wnt/β-catenin signaling pathway. These findings underscore the potential of SHOX2 as a promising therapeutic target for GC.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Downregulation of short-stature homeobox protein 2 suppresses gastric cancer cell growth and stemness in vitro and in vivo via inactivating wnt/β-catenin signaling
Gastric cancer (GC) a prevalent form of cancer globally. Previous research suggests that SHOX2 may have a role in promoting cancer progression. However, the role of SHOX2 in GC is not well understood. Based on data from TCGA_GC data set, SHXO2 levels were examined in normal and GC tissues. Patients in the TCGA_GC cohort were divided into high- and low-SHOX2 level groups for analysis of overall survival (OS), functional enrichment, and immune infiltration. Furthermore, experiments were conducted to investigate the impact of SHOX2 on GC cell function through gain- and loss-of-function experiments. Utilizing data from public databases, SHOX2 mRNA levels were found to be elevated in GC tissues compared to normal control, this finding was confirmed by RT-qPCR, western blot analysis, and immune-histochemical analyses. Elevated SHOX2 levels could serve as an independent indicator of poor prognosis in GC patients. Furthermore, SHOX2 levels had a negative correlation with CD8 T cells and CD4 memory activated T cells, and a positive correlation with of M0 macrophages in GC patients. Functional analyses revealed that SHOX2 deficiency notably suppressed GC cell proliferation, migration, and invasion. Additionally, SHOX2 deficiency was shown to suppress stemness in GC cells in vitro and in vivo via inactivating wnt/β-catenin signaling. Collectively, SHOX2 may serve as a prognostic marker for GC patients, and downregulation of SHOX2 could effectively impede GC cell growth and stemness by inactivating the wnt/β-catenin signaling pathway. These findings underscore the potential of SHOX2 as a promising therapeutic target for GC.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.