正式合同缓解多代理强化学习中的社会困境

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Andreas Haupt, Phillip Christoffersen, Mehul Damani, Dylan Hadfield-Menell
{"title":"正式合同缓解多代理强化学习中的社会困境","authors":"Andreas Haupt,&nbsp;Phillip Christoffersen,&nbsp;Mehul Damani,&nbsp;Dylan Hadfield-Menell","doi":"10.1007/s10458-024-09682-5","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-agent Reinforcement Learning (MARL) is a powerful tool for training autonomous agents acting independently in a common environment. However, it can lead to sub-optimal behavior when individual incentives and group incentives diverge. Humans are remarkably capable at solving these social dilemmas. It is an open problem in MARL to replicate such cooperative behaviors in selfish agents. In this work, we draw upon the idea of formal contracting from economics to overcome diverging incentives between agents in MARL. We propose an augmentation to a Markov game where agents voluntarily agree to binding transfers of reward, under pre-specified conditions. Our contributions are theoretical and empirical. First, we show that this augmentation makes all subgame-perfect equilibria of all Fully Observable Markov Games exhibit socially optimal behavior, given a sufficiently rich space of contracts. Next, we show that for general contract spaces, and even under partial observability, richer contract spaces lead to higher welfare. Hence, contract space design solves an exploration-exploitation tradeoff, sidestepping incentive issues. We complement our theoretical analysis with experiments. Issues of exploration in the contracting augmentation are mitigated using a training methodology inspired by multi-objective reinforcement learning: Multi-Objective Contract Augmentation Learning. We test our methodology in static, single-move games, as well as dynamic domains that simulate traffic, pollution management, and common pool resource management.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-024-09682-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Formal contracts mitigate social dilemmas in multi-agent reinforcement learning\",\"authors\":\"Andreas Haupt,&nbsp;Phillip Christoffersen,&nbsp;Mehul Damani,&nbsp;Dylan Hadfield-Menell\",\"doi\":\"10.1007/s10458-024-09682-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-agent Reinforcement Learning (MARL) is a powerful tool for training autonomous agents acting independently in a common environment. However, it can lead to sub-optimal behavior when individual incentives and group incentives diverge. Humans are remarkably capable at solving these social dilemmas. It is an open problem in MARL to replicate such cooperative behaviors in selfish agents. In this work, we draw upon the idea of formal contracting from economics to overcome diverging incentives between agents in MARL. We propose an augmentation to a Markov game where agents voluntarily agree to binding transfers of reward, under pre-specified conditions. Our contributions are theoretical and empirical. First, we show that this augmentation makes all subgame-perfect equilibria of all Fully Observable Markov Games exhibit socially optimal behavior, given a sufficiently rich space of contracts. Next, we show that for general contract spaces, and even under partial observability, richer contract spaces lead to higher welfare. Hence, contract space design solves an exploration-exploitation tradeoff, sidestepping incentive issues. We complement our theoretical analysis with experiments. Issues of exploration in the contracting augmentation are mitigated using a training methodology inspired by multi-objective reinforcement learning: Multi-Objective Contract Augmentation Learning. We test our methodology in static, single-move games, as well as dynamic domains that simulate traffic, pollution management, and common pool resource management.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10458-024-09682-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-024-09682-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09682-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多代理强化学习(MARL)是训练在共同环境中独立行动的自主代理的有力工具。然而,当个体激励与群体激励出现分歧时,它可能会导致次优行为。人类在解决这些社会困境方面有着非凡的能力。在 MARL 中,如何在自私的代理中复制这种合作行为是一个尚未解决的问题。在这项工作中,我们借鉴了经济学中的正式契约思想,以克服 MARL 中代理之间的激励分歧。我们提出了一种马尔可夫博弈的增强方法,在这种博弈中,代理在预先指定的条件下自愿同意有约束力的奖励转移。我们的贡献既有理论上的,也有经验上的。首先,我们证明,在合同空间足够丰富的情况下,这种扩展会使所有完全可观测马尔可夫博弈的所有子博弈完全均衡表现出社会最优行为。接下来,我们证明,对于一般的合约空间,甚至在部分可观测性条件下,更丰富的合约空间也会带来更高的福利。因此,合约空间设计解决了探索与开发之间的权衡问题,避免了激励问题。我们用实验来补充我们的理论分析。在多目标强化学习的启发下,我们采用了一种训练方法来缓解契约扩展中的探索问题:多目标合约增强学习。我们在静态的单行动博弈以及模拟交通、污染管理和公共资源管理的动态领域中测试了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal contracts mitigate social dilemmas in multi-agent reinforcement learning

Multi-agent Reinforcement Learning (MARL) is a powerful tool for training autonomous agents acting independently in a common environment. However, it can lead to sub-optimal behavior when individual incentives and group incentives diverge. Humans are remarkably capable at solving these social dilemmas. It is an open problem in MARL to replicate such cooperative behaviors in selfish agents. In this work, we draw upon the idea of formal contracting from economics to overcome diverging incentives between agents in MARL. We propose an augmentation to a Markov game where agents voluntarily agree to binding transfers of reward, under pre-specified conditions. Our contributions are theoretical and empirical. First, we show that this augmentation makes all subgame-perfect equilibria of all Fully Observable Markov Games exhibit socially optimal behavior, given a sufficiently rich space of contracts. Next, we show that for general contract spaces, and even under partial observability, richer contract spaces lead to higher welfare. Hence, contract space design solves an exploration-exploitation tradeoff, sidestepping incentive issues. We complement our theoretical analysis with experiments. Issues of exploration in the contracting augmentation are mitigated using a training methodology inspired by multi-objective reinforcement learning: Multi-Objective Contract Augmentation Learning. We test our methodology in static, single-move games, as well as dynamic domains that simulate traffic, pollution management, and common pool resource management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信