初等除数、霍赫斯特对偶性和光谱

IF 0.5 4区 数学 Q3 MATHEMATICS
Wolfgang Rump
{"title":"初等除数、霍赫斯特对偶性和光谱","authors":"Wolfgang Rump","doi":"10.1007/s00013-024-02052-3","DOIUrl":null,"url":null,"abstract":"<div><p>It is proved that every Bézout domain admits an embedding into an elementary divisor domain with the same divisibility group. So the prime spectrum of a Bézout domain is homeomorphic to the prime spectrum of an elementary divisor domain. Together with an earlier result, it follows that a topological space is homeomorphic to the maximal spectrum of an elementary divisor domain if and only if it is a serial quasi-compact <span>\\(T_1\\)</span>-space.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 5","pages":"467 - 476"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary divisors, Hochster duality, and spectra\",\"authors\":\"Wolfgang Rump\",\"doi\":\"10.1007/s00013-024-02052-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is proved that every Bézout domain admits an embedding into an elementary divisor domain with the same divisibility group. So the prime spectrum of a Bézout domain is homeomorphic to the prime spectrum of an elementary divisor domain. Together with an earlier result, it follows that a topological space is homeomorphic to the maximal spectrum of an elementary divisor domain if and only if it is a serial quasi-compact <span>\\\\(T_1\\\\)</span>-space.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 5\",\"pages\":\"467 - 476\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02052-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02052-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究证明,每个贝祖特域都可以嵌入到具有相同可分性群的初等除数域中。因此,一个贝祖特域的素谱与一个初等除数域的素谱是同构的。结合之前的一个结果,我们可以得出,当且仅当一个拓扑空间是一个序列准紧密的(T_1\)空间时,它与一个初等除数域的最大谱是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary divisors, Hochster duality, and spectra

It is proved that every Bézout domain admits an embedding into an elementary divisor domain with the same divisibility group. So the prime spectrum of a Bézout domain is homeomorphic to the prime spectrum of an elementary divisor domain. Together with an earlier result, it follows that a topological space is homeomorphic to the maximal spectrum of an elementary divisor domain if and only if it is a serial quasi-compact \(T_1\)-space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信