Ganesh Kumar;Abdullahi Abubakar Imam;Shuib Basri;Ahmad Sobri Hashim;Abdul Ghani Haji Naim;Luiz Fernando Capretz;Abdullateef Oluwagbemiga Balogun;Hussaini Mamman
{"title":"用于软件需求风险预测的集合平衡嵌套二分法模糊模型","authors":"Ganesh Kumar;Abdullahi Abubakar Imam;Shuib Basri;Ahmad Sobri Hashim;Abdul Ghani Haji Naim;Luiz Fernando Capretz;Abdullateef Oluwagbemiga Balogun;Hussaini Mamman","doi":"10.1109/ACCESS.2024.3473942","DOIUrl":null,"url":null,"abstract":"Modern software systems are becoming more intricate, making identification of risks in the software requirement phase— a fundamental aspect of the software development life cycle (SDLC)—complex. Inadequate risk assessment may result in the malfunction of a software system, either in the development or production phase. Therefore, risk prediction plays a crucial role in software requirements, serving as the first step in any software project. Hence, developing adaptive predictive models that can offer consistent and explainable insights for handling risk prediction is imperative. This study proposes novel ensemble class balanced nested dichotomy (EBND) fuzzy induction models for risk prediction in software requirement. Specifically, the proposed EBND models employ a hierarchical structure consisting of binary trees featuring distinct nested dichotomies that are generated randomly for each tree. Thereafter, we use an ensemble principle to refine rules generated from the resulting binary tree. The predictive efficacy of the suggested EBND models is further extended by introducing a data sampling method into their prediction process. The inclusion of the data sampling method acts to mitigate the underlying disparity in the class labels that may affect its prediction processes. The efficacy of the EBND models is then evaluated and compared to current solutions using the open-source software risk dataset. The observed findings revealed that the EBND models demonstrated superior predictive capabilities when compared to the conventional models and state-of-the-art methodologies. Specifically, the EBND models achieved an average accuracy threshold value of 98%, as well as high values for the f-measure metric.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146225-146243"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10709888","citationCount":"0","resultStr":"{\"title\":\"Ensemble Balanced Nested Dichotomy Fuzzy Models for Software Requirement Risk Prediction\",\"authors\":\"Ganesh Kumar;Abdullahi Abubakar Imam;Shuib Basri;Ahmad Sobri Hashim;Abdul Ghani Haji Naim;Luiz Fernando Capretz;Abdullateef Oluwagbemiga Balogun;Hussaini Mamman\",\"doi\":\"10.1109/ACCESS.2024.3473942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern software systems are becoming more intricate, making identification of risks in the software requirement phase— a fundamental aspect of the software development life cycle (SDLC)—complex. Inadequate risk assessment may result in the malfunction of a software system, either in the development or production phase. Therefore, risk prediction plays a crucial role in software requirements, serving as the first step in any software project. Hence, developing adaptive predictive models that can offer consistent and explainable insights for handling risk prediction is imperative. This study proposes novel ensemble class balanced nested dichotomy (EBND) fuzzy induction models for risk prediction in software requirement. Specifically, the proposed EBND models employ a hierarchical structure consisting of binary trees featuring distinct nested dichotomies that are generated randomly for each tree. Thereafter, we use an ensemble principle to refine rules generated from the resulting binary tree. The predictive efficacy of the suggested EBND models is further extended by introducing a data sampling method into their prediction process. The inclusion of the data sampling method acts to mitigate the underlying disparity in the class labels that may affect its prediction processes. The efficacy of the EBND models is then evaluated and compared to current solutions using the open-source software risk dataset. The observed findings revealed that the EBND models demonstrated superior predictive capabilities when compared to the conventional models and state-of-the-art methodologies. Specifically, the EBND models achieved an average accuracy threshold value of 98%, as well as high values for the f-measure metric.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"146225-146243\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10709888\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10709888/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10709888/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Modern software systems are becoming more intricate, making identification of risks in the software requirement phase— a fundamental aspect of the software development life cycle (SDLC)—complex. Inadequate risk assessment may result in the malfunction of a software system, either in the development or production phase. Therefore, risk prediction plays a crucial role in software requirements, serving as the first step in any software project. Hence, developing adaptive predictive models that can offer consistent and explainable insights for handling risk prediction is imperative. This study proposes novel ensemble class balanced nested dichotomy (EBND) fuzzy induction models for risk prediction in software requirement. Specifically, the proposed EBND models employ a hierarchical structure consisting of binary trees featuring distinct nested dichotomies that are generated randomly for each tree. Thereafter, we use an ensemble principle to refine rules generated from the resulting binary tree. The predictive efficacy of the suggested EBND models is further extended by introducing a data sampling method into their prediction process. The inclusion of the data sampling method acts to mitigate the underlying disparity in the class labels that may affect its prediction processes. The efficacy of the EBND models is then evaluated and compared to current solutions using the open-source software risk dataset. The observed findings revealed that the EBND models demonstrated superior predictive capabilities when compared to the conventional models and state-of-the-art methodologies. Specifically, the EBND models achieved an average accuracy threshold value of 98%, as well as high values for the f-measure metric.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.