Hyojoon Yun;Hyeonchan Lim;Hayoung Lee;Doohyun Yoon;Sungho Kang
{"title":"利用多通道数据的 CNN 对间歇性故障进行高效扫描诊断","authors":"Hyojoon Yun;Hyeonchan Lim;Hayoung Lee;Doohyun Yoon;Sungho Kang","doi":"10.1109/ACCESS.2024.3475229","DOIUrl":null,"url":null,"abstract":"Scan chains are essential for enhancing the testability of semiconductor circuits. While scan chains enhance the testing capability, defects can also occur in scan chains due to the hardware overhead caused by scan chains. To prevent a decrease in yield due to such defects, scan chain diagnosis is widely used in semiconductor manufacturing as an important system. Particularly, with the increasing complexity of semiconductor circuits, there is a growing necessity for the diagnosis of intermittent faults. Since the distinct patterns are shown in test results for intermittent faults compared to permanent faults, a decrease in diagnostic accuracy is caused by the occurrence of intermittent faults. To address this problem, this paper introduces a new deep-learning-based scan-chain diagnosis method, designed to diagnose both intermittent and permanent faults. The proposed method introduces two new concepts for diagnosing not only permanent but also intermittent faults. One is a CNN optimized for scan chain diagnosis, and the other is newly optimized input data tailored for this CNN architecture. The proposed CNN architecture is composed of multiple layers centered around the modified inception module adapted for scan chain diagnosis, maintaining spatial and local information while enabling additional feature extraction. Furthermore, the new input data is multi-channel data composed of subset failure vectors (SFVs), integer failure vectors (IFVs), and fan-out vectors, allowing for the maximization of CNN characteristics. The experimental results demonstrate that diagnostic accuracy for intermittent faults is significantly improved by the proposed method compared to previous works.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146463-146475"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706206","citationCount":"0","resultStr":"{\"title\":\"An Efficient Scan Diagnosis for Intermittent Faults Using CNN With Multi-Channel Data\",\"authors\":\"Hyojoon Yun;Hyeonchan Lim;Hayoung Lee;Doohyun Yoon;Sungho Kang\",\"doi\":\"10.1109/ACCESS.2024.3475229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scan chains are essential for enhancing the testability of semiconductor circuits. While scan chains enhance the testing capability, defects can also occur in scan chains due to the hardware overhead caused by scan chains. To prevent a decrease in yield due to such defects, scan chain diagnosis is widely used in semiconductor manufacturing as an important system. Particularly, with the increasing complexity of semiconductor circuits, there is a growing necessity for the diagnosis of intermittent faults. Since the distinct patterns are shown in test results for intermittent faults compared to permanent faults, a decrease in diagnostic accuracy is caused by the occurrence of intermittent faults. To address this problem, this paper introduces a new deep-learning-based scan-chain diagnosis method, designed to diagnose both intermittent and permanent faults. The proposed method introduces two new concepts for diagnosing not only permanent but also intermittent faults. One is a CNN optimized for scan chain diagnosis, and the other is newly optimized input data tailored for this CNN architecture. The proposed CNN architecture is composed of multiple layers centered around the modified inception module adapted for scan chain diagnosis, maintaining spatial and local information while enabling additional feature extraction. Furthermore, the new input data is multi-channel data composed of subset failure vectors (SFVs), integer failure vectors (IFVs), and fan-out vectors, allowing for the maximization of CNN characteristics. The experimental results demonstrate that diagnostic accuracy for intermittent faults is significantly improved by the proposed method compared to previous works.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"146463-146475\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706206\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706206/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706206/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An Efficient Scan Diagnosis for Intermittent Faults Using CNN With Multi-Channel Data
Scan chains are essential for enhancing the testability of semiconductor circuits. While scan chains enhance the testing capability, defects can also occur in scan chains due to the hardware overhead caused by scan chains. To prevent a decrease in yield due to such defects, scan chain diagnosis is widely used in semiconductor manufacturing as an important system. Particularly, with the increasing complexity of semiconductor circuits, there is a growing necessity for the diagnosis of intermittent faults. Since the distinct patterns are shown in test results for intermittent faults compared to permanent faults, a decrease in diagnostic accuracy is caused by the occurrence of intermittent faults. To address this problem, this paper introduces a new deep-learning-based scan-chain diagnosis method, designed to diagnose both intermittent and permanent faults. The proposed method introduces two new concepts for diagnosing not only permanent but also intermittent faults. One is a CNN optimized for scan chain diagnosis, and the other is newly optimized input data tailored for this CNN architecture. The proposed CNN architecture is composed of multiple layers centered around the modified inception module adapted for scan chain diagnosis, maintaining spatial and local information while enabling additional feature extraction. Furthermore, the new input data is multi-channel data composed of subset failure vectors (SFVs), integer failure vectors (IFVs), and fan-out vectors, allowing for the maximization of CNN characteristics. The experimental results demonstrate that diagnostic accuracy for intermittent faults is significantly improved by the proposed method compared to previous works.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.