{"title":"基于 MZI 的光子集成电路上的全软件控制","authors":"Yong Kwon;Martino Bernard;Leonardo Limongi;Gioele Piccoli;Mher Ghulinyan;Byung-Soo Choi","doi":"10.1109/ACCESS.2024.3474014","DOIUrl":null,"url":null,"abstract":"A software platform for quantum computing is required to run a complex algorithm on a real quantum device through automatically converting a quantum circuit level algorithm to a control sequence of target device. Moreover, the software platform must be tailored for the target quantum system by exploiting the properties of qubits and gates. In this work, we show how to implement a software platform for a photonic integrated circuit (PIC) platform with path-encoded photon qubits and quantum gates realized by means of interference in a mesh of tuneable Mach-Zehnder interferometers (MZIs). For universal and programmable quantum computing, the software platform consists of three standard modules: decomposer, mapper, and controller. To verify the software we runs example circuit through software and hardware integration platform and confirm each module generates correct output. Also the validation is done by comparing two results for conventionally used manual way and the software supported automatic way. These two points ensure that the implemented software works correctly when applied to the PIC.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146291-146302"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705287","citationCount":"0","resultStr":"{\"title\":\"Full Software Control on MZI-Based Photonic Integrated Circuit\",\"authors\":\"Yong Kwon;Martino Bernard;Leonardo Limongi;Gioele Piccoli;Mher Ghulinyan;Byung-Soo Choi\",\"doi\":\"10.1109/ACCESS.2024.3474014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A software platform for quantum computing is required to run a complex algorithm on a real quantum device through automatically converting a quantum circuit level algorithm to a control sequence of target device. Moreover, the software platform must be tailored for the target quantum system by exploiting the properties of qubits and gates. In this work, we show how to implement a software platform for a photonic integrated circuit (PIC) platform with path-encoded photon qubits and quantum gates realized by means of interference in a mesh of tuneable Mach-Zehnder interferometers (MZIs). For universal and programmable quantum computing, the software platform consists of three standard modules: decomposer, mapper, and controller. To verify the software we runs example circuit through software and hardware integration platform and confirm each module generates correct output. Also the validation is done by comparing two results for conventionally used manual way and the software supported automatic way. These two points ensure that the implemented software works correctly when applied to the PIC.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"146291-146302\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705287/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705287/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Full Software Control on MZI-Based Photonic Integrated Circuit
A software platform for quantum computing is required to run a complex algorithm on a real quantum device through automatically converting a quantum circuit level algorithm to a control sequence of target device. Moreover, the software platform must be tailored for the target quantum system by exploiting the properties of qubits and gates. In this work, we show how to implement a software platform for a photonic integrated circuit (PIC) platform with path-encoded photon qubits and quantum gates realized by means of interference in a mesh of tuneable Mach-Zehnder interferometers (MZIs). For universal and programmable quantum computing, the software platform consists of three standard modules: decomposer, mapper, and controller. To verify the software we runs example circuit through software and hardware integration platform and confirm each module generates correct output. Also the validation is done by comparing two results for conventionally used manual way and the software supported automatic way. These two points ensure that the implemented software works correctly when applied to the PIC.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.