Kegomoditswe Boikanyo;Adamu Murtala Zungeru;Abid Yahya;Caspar K. Lebekwe
{"title":"利用自适应提升与敏感性分析优化移动无线传感器网络路由协议的性能","authors":"Kegomoditswe Boikanyo;Adamu Murtala Zungeru;Abid Yahya;Caspar K. Lebekwe","doi":"10.1109/ACCESS.2024.3474288","DOIUrl":null,"url":null,"abstract":"Mobile Wireless Sensor Networks (MWSNs) are employed in diverse applications, including remote patient monitoring systems (RPMS). In RPMS, biomedical sensors collect physiological data from patients outside clinical settings, and the data is transmitted wirelessly to healthcare providers for informed decisions. However, most routing algorithms focus on optimizing routing in static RPMS, neglecting mobile RPMS. This paper introduces an approach to improving the efficiency of MWSN algorithms, with a focus on the Termite Hill Routing Algorithm (THA) applied in RPMS. The investigation employs methods of sensitivity analysis to reveal how crucial parameters, such as the quantity of nodes, speed of nodes, and distribution of nodes affect the behavior and throughput of the algorithm. The paper introduces a novel methodology, Enhanced Regression-based Gradient Boosting (ERGB), which optimizes the algorithm’s parameters and enhances performance. ERGB is a unique combination of regression-based adaptive gradient boosting with sensitivity analysis and a robust machine-learning algorithm. It identifies and ranks the most critical factors that affect throughput in the constantly changing network environment of mobile RPMS. The study found that the network topology size and the source node speed are the most critical parameters impacting the algorithm, piquing the audience’s interest in this innovative approach. The study compared the optimized THA with default parameters and two other algorithms (AODV and Bee Sensor) used with optimized parameters. The results demonstrate significant improvements in throughput, reaching a maximum of about 2.6 Kb/s compared to 0.3 Kb/s with default parameters.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146494-146512"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705357","citationCount":"0","resultStr":"{\"title\":\"Performance Optimization for Mobile Wireless Sensor Networks Routing Protocol Using Adaptive Boosting With Sensitivity Analysis\",\"authors\":\"Kegomoditswe Boikanyo;Adamu Murtala Zungeru;Abid Yahya;Caspar K. Lebekwe\",\"doi\":\"10.1109/ACCESS.2024.3474288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Wireless Sensor Networks (MWSNs) are employed in diverse applications, including remote patient monitoring systems (RPMS). In RPMS, biomedical sensors collect physiological data from patients outside clinical settings, and the data is transmitted wirelessly to healthcare providers for informed decisions. However, most routing algorithms focus on optimizing routing in static RPMS, neglecting mobile RPMS. This paper introduces an approach to improving the efficiency of MWSN algorithms, with a focus on the Termite Hill Routing Algorithm (THA) applied in RPMS. The investigation employs methods of sensitivity analysis to reveal how crucial parameters, such as the quantity of nodes, speed of nodes, and distribution of nodes affect the behavior and throughput of the algorithm. The paper introduces a novel methodology, Enhanced Regression-based Gradient Boosting (ERGB), which optimizes the algorithm’s parameters and enhances performance. ERGB is a unique combination of regression-based adaptive gradient boosting with sensitivity analysis and a robust machine-learning algorithm. It identifies and ranks the most critical factors that affect throughput in the constantly changing network environment of mobile RPMS. The study found that the network topology size and the source node speed are the most critical parameters impacting the algorithm, piquing the audience’s interest in this innovative approach. The study compared the optimized THA with default parameters and two other algorithms (AODV and Bee Sensor) used with optimized parameters. The results demonstrate significant improvements in throughput, reaching a maximum of about 2.6 Kb/s compared to 0.3 Kb/s with default parameters.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"146494-146512\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705357\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705357/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705357/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Performance Optimization for Mobile Wireless Sensor Networks Routing Protocol Using Adaptive Boosting With Sensitivity Analysis
Mobile Wireless Sensor Networks (MWSNs) are employed in diverse applications, including remote patient monitoring systems (RPMS). In RPMS, biomedical sensors collect physiological data from patients outside clinical settings, and the data is transmitted wirelessly to healthcare providers for informed decisions. However, most routing algorithms focus on optimizing routing in static RPMS, neglecting mobile RPMS. This paper introduces an approach to improving the efficiency of MWSN algorithms, with a focus on the Termite Hill Routing Algorithm (THA) applied in RPMS. The investigation employs methods of sensitivity analysis to reveal how crucial parameters, such as the quantity of nodes, speed of nodes, and distribution of nodes affect the behavior and throughput of the algorithm. The paper introduces a novel methodology, Enhanced Regression-based Gradient Boosting (ERGB), which optimizes the algorithm’s parameters and enhances performance. ERGB is a unique combination of regression-based adaptive gradient boosting with sensitivity analysis and a robust machine-learning algorithm. It identifies and ranks the most critical factors that affect throughput in the constantly changing network environment of mobile RPMS. The study found that the network topology size and the source node speed are the most critical parameters impacting the algorithm, piquing the audience’s interest in this innovative approach. The study compared the optimized THA with default parameters and two other algorithms (AODV and Bee Sensor) used with optimized parameters. The results demonstrate significant improvements in throughput, reaching a maximum of about 2.6 Kb/s compared to 0.3 Kb/s with default parameters.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.