Youssef Al Ozaibi;Manolo Dulva Hina;Amar Ramdane-Cherif
{"title":"CARLA 中的端到端自动驾驶:一项调查","authors":"Youssef Al Ozaibi;Manolo Dulva Hina;Amar Ramdane-Cherif","doi":"10.1109/ACCESS.2024.3473611","DOIUrl":null,"url":null,"abstract":"Autonomous Driving (AD) has evolved significantly since its beginnings in the 1980s, with continuous advancements driven by both industry and academia. Traditional AD systems break down the driving task into smaller modules—such as perception, localization, planning, and control– and optimizes them independently. In contrast, end-to-end models use neural networks to map sensory inputs directly to vehicle controls, optimizing the entire driving process as a single task. Recent advancements in deep learning have driven increased interest in end-to-end models, which is the central focus of this review. In this survey, we discuss how CARLA-based state-of-the-art implementations address various issues encountered in end-to-end autonomous driving through various model inputs, outputs, architectures, and training paradigms. To provide a comprehensive overview, we additionally include a concise summary of these methods in a single large table. Finally, we present evaluations and discussions of the methods, and suggest future avenues to tackle current challenges faced by end-to-end models.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"146866-146900"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704612","citationCount":"0","resultStr":"{\"title\":\"End-to-End Autonomous Driving in CARLA: A Survey\",\"authors\":\"Youssef Al Ozaibi;Manolo Dulva Hina;Amar Ramdane-Cherif\",\"doi\":\"10.1109/ACCESS.2024.3473611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous Driving (AD) has evolved significantly since its beginnings in the 1980s, with continuous advancements driven by both industry and academia. Traditional AD systems break down the driving task into smaller modules—such as perception, localization, planning, and control– and optimizes them independently. In contrast, end-to-end models use neural networks to map sensory inputs directly to vehicle controls, optimizing the entire driving process as a single task. Recent advancements in deep learning have driven increased interest in end-to-end models, which is the central focus of this review. In this survey, we discuss how CARLA-based state-of-the-art implementations address various issues encountered in end-to-end autonomous driving through various model inputs, outputs, architectures, and training paradigms. To provide a comprehensive overview, we additionally include a concise summary of these methods in a single large table. Finally, we present evaluations and discussions of the methods, and suggest future avenues to tackle current challenges faced by end-to-end models.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"146866-146900\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704612\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704612/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704612/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Autonomous Driving (AD) has evolved significantly since its beginnings in the 1980s, with continuous advancements driven by both industry and academia. Traditional AD systems break down the driving task into smaller modules—such as perception, localization, planning, and control– and optimizes them independently. In contrast, end-to-end models use neural networks to map sensory inputs directly to vehicle controls, optimizing the entire driving process as a single task. Recent advancements in deep learning have driven increased interest in end-to-end models, which is the central focus of this review. In this survey, we discuss how CARLA-based state-of-the-art implementations address various issues encountered in end-to-end autonomous driving through various model inputs, outputs, architectures, and training paradigms. To provide a comprehensive overview, we additionally include a concise summary of these methods in a single large table. Finally, we present evaluations and discussions of the methods, and suggest future avenues to tackle current challenges faced by end-to-end models.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.