{"title":"抑制 PFKP 可通过调节蛋白质合成防止病理性心肌肥厚","authors":"","doi":"10.1016/j.bbadis.2024.167542","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic reprogramming precedes most alterations during pathological cardiac hypertrophy and heart failure (HF). Recent studies have revealed that Phosphofructokinase, platelet (PFKP) has a wealth of metabolic and non-metabolic functions. In this study, we explored the role of PFKP in cardiac hypertrophic growth and HF. The expression level of PFKP was elevated both in pathological cardiac remodeling mouse model challenged by transverse aortic constriction (TAC) surgery and in the neonatal rat cardiomyocytes (NRCMs) stimulated by phenylephrine (PE). In global PFKP knockout (PFKP-KO) mice, cardiac hypertrophy was ameliorated under TAC surgery, while overexpression of PFKP by intravenous injection of adeno-associated virus 9 (AAV9) under the cardiac troponin T (cTnT) promoter worsened myocardial hypertrophy and fibrosis. In NRCMs, small interfering RNA (SiRNA) knockdown or adenovirus (Adv) overexpression of PFKP was employed and the intervention of PFKP showed a similar phenotype. Mechanistically, immunoprecipitation combined with liquid chromatography-tandem mass spectrometry (IP-MS/MS) analysis was used to identify the interacting proteins of PFKP. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) was identified as the downstream target of PFKP. In the PE-stimulated NRCM hypertrophy model and mouse TAC model, knocking down EIF2S2 after PFKP overexpression reduced the synthesis of new proteins and alleviated the hypertrophy phenotype. Our findings illuminate that PFKP participates in pathological cardiac hypertrophy partly by regulating protein synthesis through EIF2S2, which provides a new clue for the involvement of metabolic intermediates in signal transduction.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PFKP inhibition protects against pathological cardiac hypertrophy by regulating protein synthesis\",\"authors\":\"\",\"doi\":\"10.1016/j.bbadis.2024.167542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metabolic reprogramming precedes most alterations during pathological cardiac hypertrophy and heart failure (HF). Recent studies have revealed that Phosphofructokinase, platelet (PFKP) has a wealth of metabolic and non-metabolic functions. In this study, we explored the role of PFKP in cardiac hypertrophic growth and HF. The expression level of PFKP was elevated both in pathological cardiac remodeling mouse model challenged by transverse aortic constriction (TAC) surgery and in the neonatal rat cardiomyocytes (NRCMs) stimulated by phenylephrine (PE). In global PFKP knockout (PFKP-KO) mice, cardiac hypertrophy was ameliorated under TAC surgery, while overexpression of PFKP by intravenous injection of adeno-associated virus 9 (AAV9) under the cardiac troponin T (cTnT) promoter worsened myocardial hypertrophy and fibrosis. In NRCMs, small interfering RNA (SiRNA) knockdown or adenovirus (Adv) overexpression of PFKP was employed and the intervention of PFKP showed a similar phenotype. Mechanistically, immunoprecipitation combined with liquid chromatography-tandem mass spectrometry (IP-MS/MS) analysis was used to identify the interacting proteins of PFKP. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) was identified as the downstream target of PFKP. In the PE-stimulated NRCM hypertrophy model and mouse TAC model, knocking down EIF2S2 after PFKP overexpression reduced the synthesis of new proteins and alleviated the hypertrophy phenotype. Our findings illuminate that PFKP participates in pathological cardiac hypertrophy partly by regulating protein synthesis through EIF2S2, which provides a new clue for the involvement of metabolic intermediates in signal transduction.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443924005362\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005362","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PFKP inhibition protects against pathological cardiac hypertrophy by regulating protein synthesis
Metabolic reprogramming precedes most alterations during pathological cardiac hypertrophy and heart failure (HF). Recent studies have revealed that Phosphofructokinase, platelet (PFKP) has a wealth of metabolic and non-metabolic functions. In this study, we explored the role of PFKP in cardiac hypertrophic growth and HF. The expression level of PFKP was elevated both in pathological cardiac remodeling mouse model challenged by transverse aortic constriction (TAC) surgery and in the neonatal rat cardiomyocytes (NRCMs) stimulated by phenylephrine (PE). In global PFKP knockout (PFKP-KO) mice, cardiac hypertrophy was ameliorated under TAC surgery, while overexpression of PFKP by intravenous injection of adeno-associated virus 9 (AAV9) under the cardiac troponin T (cTnT) promoter worsened myocardial hypertrophy and fibrosis. In NRCMs, small interfering RNA (SiRNA) knockdown or adenovirus (Adv) overexpression of PFKP was employed and the intervention of PFKP showed a similar phenotype. Mechanistically, immunoprecipitation combined with liquid chromatography-tandem mass spectrometry (IP-MS/MS) analysis was used to identify the interacting proteins of PFKP. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) was identified as the downstream target of PFKP. In the PE-stimulated NRCM hypertrophy model and mouse TAC model, knocking down EIF2S2 after PFKP overexpression reduced the synthesis of new proteins and alleviated the hypertrophy phenotype. Our findings illuminate that PFKP participates in pathological cardiac hypertrophy partly by regulating protein synthesis through EIF2S2, which provides a new clue for the involvement of metabolic intermediates in signal transduction.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.