Piaopiao Qiu , Aihua Xia , Xinying Yang , Lin Yi , Yilan Ouyang , Yiming Yao , Haiying Liu , Liang Li , Zhenqing Zhang
{"title":"代谢组分析揭示了海参中的岩藻糖基化硫酸软骨素在调节代谢平衡方面的潜力","authors":"Piaopiao Qiu , Aihua Xia , Xinying Yang , Lin Yi , Yilan Ouyang , Yiming Yao , Haiying Liu , Liang Li , Zhenqing Zhang","doi":"10.1016/j.jpba.2024.116509","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we prepared four derivatives of fucosylated chondroitin sulfate (FCS): full-length FCS (flFCS) from <em>Holothuria leucospilota</em>, low molecular weight FCS (lmFCS) derived from flFCS, and their de-branched counterparts, de-branched flFCS (d-flFCS) and de-branched lmFCS (d-lmFCS) via controlled acid treatment. Following structural verification using various analytical techniques, we applied targeted metabolomics to examine the impact of FCS on nutritional efficacy and its structure-activity relationship. Analysis of 225 plasma and feces samples from 75 mice revealed a positive correlation between metabolomic shifts and increased weight gain, underscoring FCS’s potential to enhance nutrient absorption and promote growth. The observed linear relationship between the levels of short-chain fatty acids in plasma and feces suggests that FCS may facilitate catabolic activities in the gastrointestinal tract. The comparative study of different FCS derivatives on mouse growth and metabolic homeostasis regulation led to the conclusion that FCS exhibits greater biological activity with a higher degree of branching and larger molecular weight.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"252 ","pages":"Article 116509"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomic analysis reveals the potential of fucosylated chondroitin sulfate from sea cucumber in modulating metabolic homeostasis\",\"authors\":\"Piaopiao Qiu , Aihua Xia , Xinying Yang , Lin Yi , Yilan Ouyang , Yiming Yao , Haiying Liu , Liang Li , Zhenqing Zhang\",\"doi\":\"10.1016/j.jpba.2024.116509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we prepared four derivatives of fucosylated chondroitin sulfate (FCS): full-length FCS (flFCS) from <em>Holothuria leucospilota</em>, low molecular weight FCS (lmFCS) derived from flFCS, and their de-branched counterparts, de-branched flFCS (d-flFCS) and de-branched lmFCS (d-lmFCS) via controlled acid treatment. Following structural verification using various analytical techniques, we applied targeted metabolomics to examine the impact of FCS on nutritional efficacy and its structure-activity relationship. Analysis of 225 plasma and feces samples from 75 mice revealed a positive correlation between metabolomic shifts and increased weight gain, underscoring FCS’s potential to enhance nutrient absorption and promote growth. The observed linear relationship between the levels of short-chain fatty acids in plasma and feces suggests that FCS may facilitate catabolic activities in the gastrointestinal tract. The comparative study of different FCS derivatives on mouse growth and metabolic homeostasis regulation led to the conclusion that FCS exhibits greater biological activity with a higher degree of branching and larger molecular weight.</div></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"252 \",\"pages\":\"Article 116509\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073170852400551X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073170852400551X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Metabolomic analysis reveals the potential of fucosylated chondroitin sulfate from sea cucumber in modulating metabolic homeostasis
In this study, we prepared four derivatives of fucosylated chondroitin sulfate (FCS): full-length FCS (flFCS) from Holothuria leucospilota, low molecular weight FCS (lmFCS) derived from flFCS, and their de-branched counterparts, de-branched flFCS (d-flFCS) and de-branched lmFCS (d-lmFCS) via controlled acid treatment. Following structural verification using various analytical techniques, we applied targeted metabolomics to examine the impact of FCS on nutritional efficacy and its structure-activity relationship. Analysis of 225 plasma and feces samples from 75 mice revealed a positive correlation between metabolomic shifts and increased weight gain, underscoring FCS’s potential to enhance nutrient absorption and promote growth. The observed linear relationship between the levels of short-chain fatty acids in plasma and feces suggests that FCS may facilitate catabolic activities in the gastrointestinal tract. The comparative study of different FCS derivatives on mouse growth and metabolic homeostasis regulation led to the conclusion that FCS exhibits greater biological activity with a higher degree of branching and larger molecular weight.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.