{"title":"儿童理解模型:韩语中的后缀被动结构案例","authors":"Gyu-Ho Shin , Seongmin Mun","doi":"10.1016/j.csl.2024.101701","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates a computational model's ability to capture monolingual children's language behaviour during comprehension in Korean, an understudied language in the field. Specifically, we test whether and how two neural network architectures (LSTM, GPT-2) cope with a suffixal passive construction involving verbal morphology and required interpretive procedures (i.e., revising the mapping between thematic roles and case markers) driven by that morphology. To this end, we fine-tune our models via patching (i.e., pre-trained model + caregiver input) and hyperparameter adjustments, and measure their binary classification performance on the test sentences used in a behavioural study manifesting scrambling and omission of sentential components to varying degrees. We find that, while these models’ performance converges with the children's response patterns found in the behavioural study to some extent, the models do not faithfully simulate the children's comprehension behaviour pertaining to the suffixal passive, yielding by-model, by-condition, and by-hyperparameter asymmetries. This points to the limits of the neural networks’ capacity to address child language features. The implications of this study invite subsequent inquiries on the extent to which computational models reveal developmental trajectories of children's linguistic knowledge that have been unveiled through corpus-based or experimental research.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling child comprehension: A case of suffixal passive construction in Korean\",\"authors\":\"Gyu-Ho Shin , Seongmin Mun\",\"doi\":\"10.1016/j.csl.2024.101701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study investigates a computational model's ability to capture monolingual children's language behaviour during comprehension in Korean, an understudied language in the field. Specifically, we test whether and how two neural network architectures (LSTM, GPT-2) cope with a suffixal passive construction involving verbal morphology and required interpretive procedures (i.e., revising the mapping between thematic roles and case markers) driven by that morphology. To this end, we fine-tune our models via patching (i.e., pre-trained model + caregiver input) and hyperparameter adjustments, and measure their binary classification performance on the test sentences used in a behavioural study manifesting scrambling and omission of sentential components to varying degrees. We find that, while these models’ performance converges with the children's response patterns found in the behavioural study to some extent, the models do not faithfully simulate the children's comprehension behaviour pertaining to the suffixal passive, yielding by-model, by-condition, and by-hyperparameter asymmetries. This points to the limits of the neural networks’ capacity to address child language features. The implications of this study invite subsequent inquiries on the extent to which computational models reveal developmental trajectories of children's linguistic knowledge that have been unveiled through corpus-based or experimental research.</div></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000846\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000846","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Modelling child comprehension: A case of suffixal passive construction in Korean
The present study investigates a computational model's ability to capture monolingual children's language behaviour during comprehension in Korean, an understudied language in the field. Specifically, we test whether and how two neural network architectures (LSTM, GPT-2) cope with a suffixal passive construction involving verbal morphology and required interpretive procedures (i.e., revising the mapping between thematic roles and case markers) driven by that morphology. To this end, we fine-tune our models via patching (i.e., pre-trained model + caregiver input) and hyperparameter adjustments, and measure their binary classification performance on the test sentences used in a behavioural study manifesting scrambling and omission of sentential components to varying degrees. We find that, while these models’ performance converges with the children's response patterns found in the behavioural study to some extent, the models do not faithfully simulate the children's comprehension behaviour pertaining to the suffixal passive, yielding by-model, by-condition, and by-hyperparameter asymmetries. This points to the limits of the neural networks’ capacity to address child language features. The implications of this study invite subsequent inquiries on the extent to which computational models reveal developmental trajectories of children's linguistic knowledge that have been unveiled through corpus-based or experimental research.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.