感知散列算法的距离分布和运行分析

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shivdutt Sharma
{"title":"感知散列算法的距离分布和运行分析","authors":"Shivdutt Sharma","doi":"10.1016/j.jvcir.2024.104310","DOIUrl":null,"url":null,"abstract":"<div><div>Perceptual image hashing refers to a class of algorithms that produce content-based image hashes. These systems use specialized perceptual hash algorithms like Phash, Microsoft’s PhotoDNA, or Facebook’s PDQ to generate a compact digest of an image file that can be roughly compared to a database of known illicit-content digests. Time taken by perceptual hashing algorithms to generate hash code has been computed. Then, we evaluated perceptual hashing algorithms on two million dataset of images. The produced nine variants of the original images were computed and then several distances were calculated. There have been several studies in the past, but in the existing literature size of the data is small and there are very few studies with hash code computation time and robustness tradeoff. This work shows that existing perceptual hashing algorithms are robust for most of the content-preserving operations and there is a tradeoff between computation time and robustness.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104310"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance distributions and runtime analysis of perceptual hashing algorithms\",\"authors\":\"Shivdutt Sharma\",\"doi\":\"10.1016/j.jvcir.2024.104310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perceptual image hashing refers to a class of algorithms that produce content-based image hashes. These systems use specialized perceptual hash algorithms like Phash, Microsoft’s PhotoDNA, or Facebook’s PDQ to generate a compact digest of an image file that can be roughly compared to a database of known illicit-content digests. Time taken by perceptual hashing algorithms to generate hash code has been computed. Then, we evaluated perceptual hashing algorithms on two million dataset of images. The produced nine variants of the original images were computed and then several distances were calculated. There have been several studies in the past, but in the existing literature size of the data is small and there are very few studies with hash code computation time and robustness tradeoff. This work shows that existing perceptual hashing algorithms are robust for most of the content-preserving operations and there is a tradeoff between computation time and robustness.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104310\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002669\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002669","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

感知图像散列是指一类生成基于内容的图像散列的算法。这些系统使用专门的感知哈希算法,如 Phash、微软的 PhotoDNA 或 Facebook 的 PDQ,生成图像文件的紧凑摘要,并可与已知非法内容摘要数据库进行大致比较。我们计算了感知散列算法生成散列码所需的时间。然后,我们在 200 万张图像数据集上对感知散列算法进行了评估。我们计算了原始图像的九种变体,然后计算了几种距离。过去曾有过一些研究,但在现有文献中,数据规模较小,很少有关于哈希代码计算时间和鲁棒性权衡的研究。这项工作表明,现有的感知哈希算法对于大多数内容保留操作都是稳健的,而且在计算时间和稳健性之间存在权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance distributions and runtime analysis of perceptual hashing algorithms
Perceptual image hashing refers to a class of algorithms that produce content-based image hashes. These systems use specialized perceptual hash algorithms like Phash, Microsoft’s PhotoDNA, or Facebook’s PDQ to generate a compact digest of an image file that can be roughly compared to a database of known illicit-content digests. Time taken by perceptual hashing algorithms to generate hash code has been computed. Then, we evaluated perceptual hashing algorithms on two million dataset of images. The produced nine variants of the original images were computed and then several distances were calculated. There have been several studies in the past, but in the existing literature size of the data is small and there are very few studies with hash code computation time and robustness tradeoff. This work shows that existing perceptual hashing algorithms are robust for most of the content-preserving operations and there is a tradeoff between computation time and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信