Qiuyue Zhang , Yunfeng Zhang , Fangxun Bao , Yang Ning , Caiming Zhang , Peide Liu
{"title":"利用多源信息和关系数据融合进行基于图表的股票预测","authors":"Qiuyue Zhang , Yunfeng Zhang , Fangxun Bao , Yang Ning , Caiming Zhang , Peide Liu","doi":"10.1016/j.ins.2024.121561","DOIUrl":null,"url":null,"abstract":"<div><div>With the application of multisource information in different fields, the combination of different types of information, such as numerical data and text information, has become a favourable choice for performing stock market analyses. Despite the rich information provided by multisource data, building structured relationships remains challenging. In addition, some market relationship-based analysis methods use a predefined graph structure as a stock relationship graph, which makes it impossible to sensitively aggregate attribute features, and these methods cannot dynamically update market relationships or relationship strengths. In this paper, we propose a novel dynamic attribute-driven graph attention network incorporating sentiment (AGATS) information, transaction data, and text data. Inspired by behavioural finance, we separately extract sentiment information as a factor of technical indicators, and further realize the early fusion of technical indicators and textual data through tensor fusion. In particular, real-time intramarket dependencies and key attribute information are captured with graph networks, enabling dynamic relationship and relationship strength updates. Experiments conducted on real datasets show that our model is capable of ourperforming previously developed methods in prediction and trading.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121561"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-based stock prediction with multisource information and relational data fusion\",\"authors\":\"Qiuyue Zhang , Yunfeng Zhang , Fangxun Bao , Yang Ning , Caiming Zhang , Peide Liu\",\"doi\":\"10.1016/j.ins.2024.121561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the application of multisource information in different fields, the combination of different types of information, such as numerical data and text information, has become a favourable choice for performing stock market analyses. Despite the rich information provided by multisource data, building structured relationships remains challenging. In addition, some market relationship-based analysis methods use a predefined graph structure as a stock relationship graph, which makes it impossible to sensitively aggregate attribute features, and these methods cannot dynamically update market relationships or relationship strengths. In this paper, we propose a novel dynamic attribute-driven graph attention network incorporating sentiment (AGATS) information, transaction data, and text data. Inspired by behavioural finance, we separately extract sentiment information as a factor of technical indicators, and further realize the early fusion of technical indicators and textual data through tensor fusion. In particular, real-time intramarket dependencies and key attribute information are captured with graph networks, enabling dynamic relationship and relationship strength updates. Experiments conducted on real datasets show that our model is capable of ourperforming previously developed methods in prediction and trading.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"690 \",\"pages\":\"Article 121561\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524014750\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014750","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Graph-based stock prediction with multisource information and relational data fusion
With the application of multisource information in different fields, the combination of different types of information, such as numerical data and text information, has become a favourable choice for performing stock market analyses. Despite the rich information provided by multisource data, building structured relationships remains challenging. In addition, some market relationship-based analysis methods use a predefined graph structure as a stock relationship graph, which makes it impossible to sensitively aggregate attribute features, and these methods cannot dynamically update market relationships or relationship strengths. In this paper, we propose a novel dynamic attribute-driven graph attention network incorporating sentiment (AGATS) information, transaction data, and text data. Inspired by behavioural finance, we separately extract sentiment information as a factor of technical indicators, and further realize the early fusion of technical indicators and textual data through tensor fusion. In particular, real-time intramarket dependencies and key attribute information are captured with graph networks, enabling dynamic relationship and relationship strength updates. Experiments conducted on real datasets show that our model is capable of ourperforming previously developed methods in prediction and trading.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.