Carlos Friedrich Loeffler , Vitor Pancieri Pinheiro , Luciano de Oliveira Castro Lara
{"title":"求解扩散-对流问题的新型直接插值边界元法公式","authors":"Carlos Friedrich Loeffler , Vitor Pancieri Pinheiro , Luciano de Oliveira Castro Lara","doi":"10.1016/j.enganabound.2024.105992","DOIUrl":null,"url":null,"abstract":"<div><div>The capability of dealing with the advective transport term constitutes a challenging issue for the performance of the majority of the numerical techniques, which significantly lose their precision with the increasing in the relative magnitude of this term. Recently, a new boundary element technique called direct interpolation (DIBEM) has emerged, mainly characterized by the approximation of the entire kernel of the remaining domain integrals. The DIBEM model has been successfully applied to several scalar field problems and recently applied to certain diffusive–advective problems with superior accuracy compared to dual reciprocity formulation (DRBEM). Using DIBEM, a broader range of precise responses for flows with higher Peclet numbers can be reached beyond a lower computational cost due to the simplicity of its matrix operations. These advantages are due DIBEM concept that employs a simple interpolation procedure to approximate the kernel of the advective domain integral. However, it was noticed that in some physical scenarios with spatial variation in the velocity field, the accuracy of DIBEM did not have the same quality observed in other applications. Therefore, this work presents a new DIBEM model so that the integral equations include the explicit calculation of spatial derivatives and simultaneously solve the variation of the divergent velocity field if this is not zero. Conversely, reactive and source terms were also included to expand numerical comparisons. Thus, in the proposed examples, the results of two DIBEM models, the standard (DIBEM-S) and the new, so-called alternative model (DIBEM-A), are compared with DRBEM and also with available analytical solutions.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105992"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel direct interpolation boundary element method formulation for solving diffusive–advective problems\",\"authors\":\"Carlos Friedrich Loeffler , Vitor Pancieri Pinheiro , Luciano de Oliveira Castro Lara\",\"doi\":\"10.1016/j.enganabound.2024.105992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The capability of dealing with the advective transport term constitutes a challenging issue for the performance of the majority of the numerical techniques, which significantly lose their precision with the increasing in the relative magnitude of this term. Recently, a new boundary element technique called direct interpolation (DIBEM) has emerged, mainly characterized by the approximation of the entire kernel of the remaining domain integrals. The DIBEM model has been successfully applied to several scalar field problems and recently applied to certain diffusive–advective problems with superior accuracy compared to dual reciprocity formulation (DRBEM). Using DIBEM, a broader range of precise responses for flows with higher Peclet numbers can be reached beyond a lower computational cost due to the simplicity of its matrix operations. These advantages are due DIBEM concept that employs a simple interpolation procedure to approximate the kernel of the advective domain integral. However, it was noticed that in some physical scenarios with spatial variation in the velocity field, the accuracy of DIBEM did not have the same quality observed in other applications. Therefore, this work presents a new DIBEM model so that the integral equations include the explicit calculation of spatial derivatives and simultaneously solve the variation of the divergent velocity field if this is not zero. Conversely, reactive and source terms were also included to expand numerical comparisons. Thus, in the proposed examples, the results of two DIBEM models, the standard (DIBEM-S) and the new, so-called alternative model (DIBEM-A), are compared with DRBEM and also with available analytical solutions.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"169 \",\"pages\":\"Article 105992\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095579972400465X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095579972400465X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel direct interpolation boundary element method formulation for solving diffusive–advective problems
The capability of dealing with the advective transport term constitutes a challenging issue for the performance of the majority of the numerical techniques, which significantly lose their precision with the increasing in the relative magnitude of this term. Recently, a new boundary element technique called direct interpolation (DIBEM) has emerged, mainly characterized by the approximation of the entire kernel of the remaining domain integrals. The DIBEM model has been successfully applied to several scalar field problems and recently applied to certain diffusive–advective problems with superior accuracy compared to dual reciprocity formulation (DRBEM). Using DIBEM, a broader range of precise responses for flows with higher Peclet numbers can be reached beyond a lower computational cost due to the simplicity of its matrix operations. These advantages are due DIBEM concept that employs a simple interpolation procedure to approximate the kernel of the advective domain integral. However, it was noticed that in some physical scenarios with spatial variation in the velocity field, the accuracy of DIBEM did not have the same quality observed in other applications. Therefore, this work presents a new DIBEM model so that the integral equations include the explicit calculation of spatial derivatives and simultaneously solve the variation of the divergent velocity field if this is not zero. Conversely, reactive and source terms were also included to expand numerical comparisons. Thus, in the proposed examples, the results of two DIBEM models, the standard (DIBEM-S) and the new, so-called alternative model (DIBEM-A), are compared with DRBEM and also with available analytical solutions.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.