考虑表面欠约束引起的裂纹能量差异的新型 PM 超合金 LCF 寿命模型

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Dianyin Hu , Miaodong Zhao , Jinchao Pan , Rusong Chen , Juncai Zhang , Yang Gao , Rongqiao Wang
{"title":"考虑表面欠约束引起的裂纹能量差异的新型 PM 超合金 LCF 寿命模型","authors":"Dianyin Hu ,&nbsp;Miaodong Zhao ,&nbsp;Jinchao Pan ,&nbsp;Rusong Chen ,&nbsp;Juncai Zhang ,&nbsp;Yang Gao ,&nbsp;Rongqiao Wang","doi":"10.1016/j.ijfatigue.2024.108648","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanism behind why internal defects are less competitive than surface roughness in low cycle fatigue (LCF) failure is still an issue for inclusion-containing powder metallurgy (PM) superalloys. Differentiating the differences in applied energy and fatigue resistance at various failure sites is crucial to addressing this issue. This study first captures the dependence of failure site on applied loading from the fractographic observations to quantify the characteristics such as surface roughness, internal defects, and sub-surface facets. Subsequently, an LCF lifetime model is developed based on fracture mechanics principles, considering the difference in applied energy and cracking energy requirements due to underconstraint degree at different sites. A representative volume element (RVE) with similar grain characteristic is then established, and different boundary conditions are applied to describe the energy differences around internal and surface. By comparing the energy at different failure sites, the model predicts the tendency of failure sites under varying loading conditions. The developed LCF lifetime model distinguishes energy input and fatigue resistance differences at surface, sub-surface, and interior of the specimen, which reduces the lifetime prediction error from a scatter band of 9 times to within 3 times.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108648"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel LCF lifetime model for PM superalloys considering crack energy differences induced by surface underconstraint\",\"authors\":\"Dianyin Hu ,&nbsp;Miaodong Zhao ,&nbsp;Jinchao Pan ,&nbsp;Rusong Chen ,&nbsp;Juncai Zhang ,&nbsp;Yang Gao ,&nbsp;Rongqiao Wang\",\"doi\":\"10.1016/j.ijfatigue.2024.108648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanism behind why internal defects are less competitive than surface roughness in low cycle fatigue (LCF) failure is still an issue for inclusion-containing powder metallurgy (PM) superalloys. Differentiating the differences in applied energy and fatigue resistance at various failure sites is crucial to addressing this issue. This study first captures the dependence of failure site on applied loading from the fractographic observations to quantify the characteristics such as surface roughness, internal defects, and sub-surface facets. Subsequently, an LCF lifetime model is developed based on fracture mechanics principles, considering the difference in applied energy and cracking energy requirements due to underconstraint degree at different sites. A representative volume element (RVE) with similar grain characteristic is then established, and different boundary conditions are applied to describe the energy differences around internal and surface. By comparing the energy at different failure sites, the model predicts the tendency of failure sites under varying loading conditions. The developed LCF lifetime model distinguishes energy input and fatigue resistance differences at surface, sub-surface, and interior of the specimen, which reduces the lifetime prediction error from a scatter band of 9 times to within 3 times.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108648\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005073\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005073","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于含夹杂物的粉末冶金(PM)超合金而言,内部缺陷在低循环疲劳(LCF)失效中的竞争力不如表面粗糙度,其背后的机理仍是一个问题。要解决这个问题,关键在于区分不同失效部位的外加能量和抗疲劳性差异。本研究首先通过断口观察捕捉失效部位对施加载荷的依赖性,量化表面粗糙度、内部缺陷和次表面刻面等特征。随后,根据断裂力学原理,考虑到不同部位的欠约束程度导致的施加能量和开裂能量要求的差异,建立了 LCF 寿命模型。然后建立了具有相似晶粒特征的代表性体积元素(RVE),并应用不同的边界条件来描述内部和表面周围的能量差异。通过比较不同破坏点的能量,该模型可预测不同加载条件下破坏点的趋势。所开发的 LCF 寿命模型可区分试样表面、次表面和内部的能量输入和疲劳抗力差异,从而将寿命预测误差从 9 倍的散布带减少到 3 倍以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel LCF lifetime model for PM superalloys considering crack energy differences induced by surface underconstraint
The mechanism behind why internal defects are less competitive than surface roughness in low cycle fatigue (LCF) failure is still an issue for inclusion-containing powder metallurgy (PM) superalloys. Differentiating the differences in applied energy and fatigue resistance at various failure sites is crucial to addressing this issue. This study first captures the dependence of failure site on applied loading from the fractographic observations to quantify the characteristics such as surface roughness, internal defects, and sub-surface facets. Subsequently, an LCF lifetime model is developed based on fracture mechanics principles, considering the difference in applied energy and cracking energy requirements due to underconstraint degree at different sites. A representative volume element (RVE) with similar grain characteristic is then established, and different boundary conditions are applied to describe the energy differences around internal and surface. By comparing the energy at different failure sites, the model predicts the tendency of failure sites under varying loading conditions. The developed LCF lifetime model distinguishes energy input and fatigue resistance differences at surface, sub-surface, and interior of the specimen, which reduces the lifetime prediction error from a scatter band of 9 times to within 3 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信