无界复合物的三性标准

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.028
Ioannis Emmanouil, Olympia Talelli
{"title":"无界复合物的三性标准","authors":"Ioannis Emmanouil,&nbsp;Olympia Talelli","doi":"10.1016/j.jalgebra.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>We study properties of modules that appear as syzygies of acyclic complexes of projective, injective, flat or flat-cotorsion modules and obtain criteria for these complexes to be contractible or totally acyclic. Our results illustrate the importance of strongly fp-injective modules in the study of these properties. We examine implications of the existence of complete resolutions (in a certain weak sense) and the finiteness of the Gorenstein projective dimension of pure-projective modules. We also use the orthogonality in the homotopy category between complexes of flat modules and pure acyclic complexes of cotorsion modules, in order to study the syzygies of acyclic complexes of flat modules. Finally, we present some applications of our results to group rings, regarding complete resolutions and cohomological periodicity.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triviality criteria for unbounded complexes\",\"authors\":\"Ioannis Emmanouil,&nbsp;Olympia Talelli\",\"doi\":\"10.1016/j.jalgebra.2024.09.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study properties of modules that appear as syzygies of acyclic complexes of projective, injective, flat or flat-cotorsion modules and obtain criteria for these complexes to be contractible or totally acyclic. Our results illustrate the importance of strongly fp-injective modules in the study of these properties. We examine implications of the existence of complete resolutions (in a certain weak sense) and the finiteness of the Gorenstein projective dimension of pure-projective modules. We also use the orthogonality in the homotopy category between complexes of flat modules and pure acyclic complexes of cotorsion modules, in order to study the syzygies of acyclic complexes of flat modules. Finally, we present some applications of our results to group rings, regarding complete resolutions and cohomological periodicity.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了作为投影模块、注入模块、平模块或平扭转模块的无环复数的协同作用出现的模块的性质,并获得了这些复数可收缩或完全无环的标准。我们的结果说明了强 fp 注入模块在这些性质研究中的重要性。我们研究了完全解析(在某种弱意义上)的存在和纯投影模块的戈伦斯坦投影维度的有限性的意义。我们还利用平模块复数和纯投影模块无环复数之间同调范畴的正交性,来研究平模块无环复数的协同性。最后,我们介绍了我们的结果在群环上的一些应用,涉及完全解析和同调周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Triviality criteria for unbounded complexes
We study properties of modules that appear as syzygies of acyclic complexes of projective, injective, flat or flat-cotorsion modules and obtain criteria for these complexes to be contractible or totally acyclic. Our results illustrate the importance of strongly fp-injective modules in the study of these properties. We examine implications of the existence of complete resolutions (in a certain weak sense) and the finiteness of the Gorenstein projective dimension of pure-projective modules. We also use the orthogonality in the homotopy category between complexes of flat modules and pure acyclic complexes of cotorsion modules, in order to study the syzygies of acyclic complexes of flat modules. Finally, we present some applications of our results to group rings, regarding complete resolutions and cohomological periodicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信