张力腿平台型浮式海上风力涡轮机两自由度达芬振荡器耦合系统中的非线性谐波共振行为和分岔

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ouming Su , Yan Li , Guoyan Li , Yiwen Cui , Haoran Li , Bin Wang , Hang Meng , Yaolong Li , Jinfeng Liang
{"title":"张力腿平台型浮式海上风力涡轮机两自由度达芬振荡器耦合系统中的非线性谐波共振行为和分岔","authors":"Ouming Su ,&nbsp;Yan Li ,&nbsp;Guoyan Li ,&nbsp;Yiwen Cui ,&nbsp;Haoran Li ,&nbsp;Bin Wang ,&nbsp;Hang Meng ,&nbsp;Yaolong Li ,&nbsp;Jinfeng Liang","doi":"10.1016/j.chaos.2024.115656","DOIUrl":null,"url":null,"abstract":"<div><div>The surge-heave coupled motion model of a Tension Leg Platform type Floating Offshore Wind Turbine (TLP FOWT) is first established. By taking the tendons stretching and platform set-down motion into consideration, the nonlinear model is a Duffing oscillator coupled system. We analyze the nonlinear feature in the surge-heave coupled motions by the semi-analytical algorithms in nonlinear dynamics. The harmonic balance method is applied to obtain the analytical solutions of the nonlinear system under wind and wave excitations. The analytical solution verifies the excellent accuracy. To further achieve the heave motion response, we organize the bifurcation analysis and discuss the effects of the dynamic parameters on the heave responses. The results reveal the multi components of heave motion, which consist of constant, primary harmonic resonate and higher order harmonic resonate. In addition, the change of dynamic parameters has various effects on the response. The increment of wave load leads to the expansion of heave response, and an instantaneous expansion appear. Both linear surge and heave damping only affect the amplitudes of heave motion. The nonlinear surge stiffness and heave stiffness can barely affect the primary harmonic resonance amplitudes, but they present different effects on the higher order harmonic resonance component.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115656"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine\",\"authors\":\"Ouming Su ,&nbsp;Yan Li ,&nbsp;Guoyan Li ,&nbsp;Yiwen Cui ,&nbsp;Haoran Li ,&nbsp;Bin Wang ,&nbsp;Hang Meng ,&nbsp;Yaolong Li ,&nbsp;Jinfeng Liang\",\"doi\":\"10.1016/j.chaos.2024.115656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surge-heave coupled motion model of a Tension Leg Platform type Floating Offshore Wind Turbine (TLP FOWT) is first established. By taking the tendons stretching and platform set-down motion into consideration, the nonlinear model is a Duffing oscillator coupled system. We analyze the nonlinear feature in the surge-heave coupled motions by the semi-analytical algorithms in nonlinear dynamics. The harmonic balance method is applied to obtain the analytical solutions of the nonlinear system under wind and wave excitations. The analytical solution verifies the excellent accuracy. To further achieve the heave motion response, we organize the bifurcation analysis and discuss the effects of the dynamic parameters on the heave responses. The results reveal the multi components of heave motion, which consist of constant, primary harmonic resonate and higher order harmonic resonate. In addition, the change of dynamic parameters has various effects on the response. The increment of wave load leads to the expansion of heave response, and an instantaneous expansion appear. Both linear surge and heave damping only affect the amplitudes of heave motion. The nonlinear surge stiffness and heave stiffness can barely affect the primary harmonic resonance amplitudes, but they present different effects on the higher order harmonic resonance component.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115656\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012086\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012086","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

首先建立了张力腿平台型浮式海上风力涡轮机(TLP FOWT)的涌浪-波浪耦合运动模型。考虑到缆索拉伸和平台下降运动,该非线性模型是一个达芬振荡器耦合系统。我们利用非线性动力学的半解析算法分析了涌浪-起伏耦合运动的非线性特征。应用谐波平衡法获得了风浪激励下非线性系统的解析解。分析解验证了其出色的准确性。为了进一步实现波浪运动响应,我们组织了分岔分析,并讨论了动力学参数对波浪响应的影响。结果表明,波浪运动有多种成分,包括常量、一次谐波共振和高阶谐波共振。此外,动态参数的变化对响应也有不同的影响。波浪载荷的增加会导致波浪响应的扩展,并出现瞬时扩展。线性涌浪和波浪阻尼都只影响波浪运动的振幅。非线性涌浪刚度和波浪刚度几乎不会影响主谐波共振振幅,但它们对高阶谐波共振分量产生了不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine
The surge-heave coupled motion model of a Tension Leg Platform type Floating Offshore Wind Turbine (TLP FOWT) is first established. By taking the tendons stretching and platform set-down motion into consideration, the nonlinear model is a Duffing oscillator coupled system. We analyze the nonlinear feature in the surge-heave coupled motions by the semi-analytical algorithms in nonlinear dynamics. The harmonic balance method is applied to obtain the analytical solutions of the nonlinear system under wind and wave excitations. The analytical solution verifies the excellent accuracy. To further achieve the heave motion response, we organize the bifurcation analysis and discuss the effects of the dynamic parameters on the heave responses. The results reveal the multi components of heave motion, which consist of constant, primary harmonic resonate and higher order harmonic resonate. In addition, the change of dynamic parameters has various effects on the response. The increment of wave load leads to the expansion of heave response, and an instantaneous expansion appear. Both linear surge and heave damping only affect the amplitudes of heave motion. The nonlinear surge stiffness and heave stiffness can barely affect the primary harmonic resonance amplitudes, but they present different effects on the higher order harmonic resonance component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信