{"title":"利用线性参数变化建模和模型预测控制减轻柔性飞翼的阵风负荷","authors":"Wei Gao, Yishu Liu, Qifu Li, Bei Lu","doi":"10.1016/j.ast.2024.109671","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a practical model predictive control (MPC) framework for gust load alleviation of a flexible flying wing. Both the controller solving and state estimation are based on a reduced-order model, which features a linear parameter-varying (LPV) form, avoiding online linearization and reducing the scale of the corresponding quadratic programming problem. An improved modeling and model reduction process is used to enhance modeling efficiency and ensure that the reduced-order model can accurately capture the rigid-flexible coupled characteristics of the flexible flying wing under arbitrary gusts. By reconstructing the output of the control-oriented model to include both rigid-body motion and flexible vibrations, the rigid-flexible coupled multi-objective control is established as an MPC problem for reference tracking. The online optimization is formulated in a sparse fashion and combined with an iterative algorithm based on predicted trajectories, describing the variation of model dynamics within the prediction horizon more accurately. With a time-varying Kalman estimator for state updating, the closed-loop simulations are performed for gust alleviation performance validation. Additionally, the real-time potential of the proposed MPC framework is demonstrated through Monte Carlo simulations.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109671"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gust load alleviation of a flexible flying wing with linear parameter-varying modeling and model predictive control\",\"authors\":\"Wei Gao, Yishu Liu, Qifu Li, Bei Lu\",\"doi\":\"10.1016/j.ast.2024.109671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a practical model predictive control (MPC) framework for gust load alleviation of a flexible flying wing. Both the controller solving and state estimation are based on a reduced-order model, which features a linear parameter-varying (LPV) form, avoiding online linearization and reducing the scale of the corresponding quadratic programming problem. An improved modeling and model reduction process is used to enhance modeling efficiency and ensure that the reduced-order model can accurately capture the rigid-flexible coupled characteristics of the flexible flying wing under arbitrary gusts. By reconstructing the output of the control-oriented model to include both rigid-body motion and flexible vibrations, the rigid-flexible coupled multi-objective control is established as an MPC problem for reference tracking. The online optimization is formulated in a sparse fashion and combined with an iterative algorithm based on predicted trajectories, describing the variation of model dynamics within the prediction horizon more accurately. With a time-varying Kalman estimator for state updating, the closed-loop simulations are performed for gust alleviation performance validation. Additionally, the real-time potential of the proposed MPC framework is demonstrated through Monte Carlo simulations.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109671\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008009\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Gust load alleviation of a flexible flying wing with linear parameter-varying modeling and model predictive control
This paper presents a practical model predictive control (MPC) framework for gust load alleviation of a flexible flying wing. Both the controller solving and state estimation are based on a reduced-order model, which features a linear parameter-varying (LPV) form, avoiding online linearization and reducing the scale of the corresponding quadratic programming problem. An improved modeling and model reduction process is used to enhance modeling efficiency and ensure that the reduced-order model can accurately capture the rigid-flexible coupled characteristics of the flexible flying wing under arbitrary gusts. By reconstructing the output of the control-oriented model to include both rigid-body motion and flexible vibrations, the rigid-flexible coupled multi-objective control is established as an MPC problem for reference tracking. The online optimization is formulated in a sparse fashion and combined with an iterative algorithm based on predicted trajectories, describing the variation of model dynamics within the prediction horizon more accurately. With a time-varying Kalman estimator for state updating, the closed-loop simulations are performed for gust alleviation performance validation. Additionally, the real-time potential of the proposed MPC framework is demonstrated through Monte Carlo simulations.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.