Silke Adam, Mykola Makhortykh, Michaela Maier, Viktor Aigenseer, Aleksandra Urman, Teresa Gil Lopez, Clara Christner, Ernesto de León, Roberto Ulloa
{"title":"提高个人层面网络跟踪的质量:现有方法面临的挑战与新内容和长尾敏感学术解决方案的介绍","authors":"Silke Adam, Mykola Makhortykh, Michaela Maier, Viktor Aigenseer, Aleksandra Urman, Teresa Gil Lopez, Clara Christner, Ernesto de León, Roberto Ulloa","doi":"10.1177/08944393241287793","DOIUrl":null,"url":null,"abstract":"This article evaluates the quality of data collection in individual-level desktop web tracking used in the social sciences and shows that the existing approaches face sampling issues, validity issues due to the lack of content-level data and their disregard for the variety of devices and long-tail consumption patterns as well as transparency and privacy issues. To overcome some of these problems, the article introduces a new academic web tracking solution, WebTrack, an open-source tracking tool maintained by a major European research institution, GESIS. The design logic, the interfaces, and the backend requirements for WebTrack are discussed, followed by a detailed examination of the strengths and weaknesses of the tool. Finally, using data from 1,185 participants, the article empirically illustrates how an improvement in data collection through WebTrack leads to innovative shifts in the use of tracking data. As WebTrack allows for collecting the content people are exposed to beyond the classical news platforms, it can greatly improve the detection of politics-related information consumption in tracking data through automated content analysis compared to traditional approaches that rely on the source-level analysis.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Quality of Individual-Level Web Tracking: Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution\",\"authors\":\"Silke Adam, Mykola Makhortykh, Michaela Maier, Viktor Aigenseer, Aleksandra Urman, Teresa Gil Lopez, Clara Christner, Ernesto de León, Roberto Ulloa\",\"doi\":\"10.1177/08944393241287793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article evaluates the quality of data collection in individual-level desktop web tracking used in the social sciences and shows that the existing approaches face sampling issues, validity issues due to the lack of content-level data and their disregard for the variety of devices and long-tail consumption patterns as well as transparency and privacy issues. To overcome some of these problems, the article introduces a new academic web tracking solution, WebTrack, an open-source tracking tool maintained by a major European research institution, GESIS. The design logic, the interfaces, and the backend requirements for WebTrack are discussed, followed by a detailed examination of the strengths and weaknesses of the tool. Finally, using data from 1,185 participants, the article empirically illustrates how an improvement in data collection through WebTrack leads to innovative shifts in the use of tracking data. As WebTrack allows for collecting the content people are exposed to beyond the classical news platforms, it can greatly improve the detection of politics-related information consumption in tracking data through automated content analysis compared to traditional approaches that rely on the source-level analysis.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393241287793\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393241287793","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Improving the Quality of Individual-Level Web Tracking: Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution
This article evaluates the quality of data collection in individual-level desktop web tracking used in the social sciences and shows that the existing approaches face sampling issues, validity issues due to the lack of content-level data and their disregard for the variety of devices and long-tail consumption patterns as well as transparency and privacy issues. To overcome some of these problems, the article introduces a new academic web tracking solution, WebTrack, an open-source tracking tool maintained by a major European research institution, GESIS. The design logic, the interfaces, and the backend requirements for WebTrack are discussed, followed by a detailed examination of the strengths and weaknesses of the tool. Finally, using data from 1,185 participants, the article empirically illustrates how an improvement in data collection through WebTrack leads to innovative shifts in the use of tracking data. As WebTrack allows for collecting the content people are exposed to beyond the classical news platforms, it can greatly improve the detection of politics-related information consumption in tracking data through automated content analysis compared to traditional approaches that rely on the source-level analysis.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.