Kathryn A. Wagner, Jessica L. Gleason, Zhen Chen, Cuilin Zhang, Stefanie N. Hinkle, Dian He, Wesley Lee, Roger B. Newman, John Owen, Daniel W. Skupski, William A. Grobman, Seth Sherman, Fasil Tekola-Ayele, Jagteshwar Grewal, Katherine L. Grantz
{"title":"基于三维超声波成像的母体血糖状态与胎儿纵向身体成分和器官体积","authors":"Kathryn A. Wagner, Jessica L. Gleason, Zhen Chen, Cuilin Zhang, Stefanie N. Hinkle, Dian He, Wesley Lee, Roger B. Newman, John Owen, Daniel W. Skupski, William A. Grobman, Seth Sherman, Fasil Tekola-Ayele, Jagteshwar Grewal, Katherine L. Grantz","doi":"10.2337/dc24-1068","DOIUrl":null,"url":null,"abstract":"OBJECTIVE Gestational diabetes mellitus (GDM) increases the risk of fetal overgrowth as measured by two-dimensional ultrasonography. Whether fetal three-dimensional (3D) soft tissue and organ volumes provide additional insight into fetal overgrowth is unknown. RESEARCH DESIGN AND METHODS We prospectively evaluated longitudinal 3D fetal body composition and organ volumes in a diverse US singleton pregnancy cohort (2015–2019). Women were diagnosed with GDM, impaired glucose tolerance (IGT), or normal glucose tolerance (NGT). Up to five 3D ultrasound scans measured fetal body composition and organ volumes; trajectories were modeled using linear mixed models. Overall and weekly mean differences in fetal 3D trajectories were tested across glycemic status, adjusted for covariates. RESULTS In this sample (n = 2,427), 5.2% of women had GDM, and 3.0% had IGT. Fetuses of women who developed GDM compared with NGT had larger fractional arm and fractional fat arm volumes from 26 to 35 weeks, smaller fractional lean arm volume from 17 to 22 weeks, and larger abdominal area from 24 to 40 weeks. Fetuses of women with IGT had similar growth patterns, which manifested later in gestation and with larger magnitudes, and had larger fractional lean arm volume. No overall differences were observed among thigh or organ volumes across glycemic status. CONCLUSIONS Body composition differed in fetuses of GDM-complicated pregnancies, including larger arm and abdominal measures across the second and third trimesters. Patterns were similar in IGT-complicated pregnancies except that they occurred later in gestation and with larger magnitudes. Future research should explore how lifestyle and medication may alter fetal fat accumulation trajectories among hyperglycemic pregnancies.","PeriodicalId":11140,"journal":{"name":"Diabetes Care","volume":null,"pages":null},"PeriodicalIF":14.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal Glycemic Status and Longitudinal Fetal Body Composition and Organ Volumes Based on Three-Dimensional Ultrasonography\",\"authors\":\"Kathryn A. Wagner, Jessica L. Gleason, Zhen Chen, Cuilin Zhang, Stefanie N. Hinkle, Dian He, Wesley Lee, Roger B. Newman, John Owen, Daniel W. Skupski, William A. Grobman, Seth Sherman, Fasil Tekola-Ayele, Jagteshwar Grewal, Katherine L. Grantz\",\"doi\":\"10.2337/dc24-1068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE Gestational diabetes mellitus (GDM) increases the risk of fetal overgrowth as measured by two-dimensional ultrasonography. Whether fetal three-dimensional (3D) soft tissue and organ volumes provide additional insight into fetal overgrowth is unknown. RESEARCH DESIGN AND METHODS We prospectively evaluated longitudinal 3D fetal body composition and organ volumes in a diverse US singleton pregnancy cohort (2015–2019). Women were diagnosed with GDM, impaired glucose tolerance (IGT), or normal glucose tolerance (NGT). Up to five 3D ultrasound scans measured fetal body composition and organ volumes; trajectories were modeled using linear mixed models. Overall and weekly mean differences in fetal 3D trajectories were tested across glycemic status, adjusted for covariates. RESULTS In this sample (n = 2,427), 5.2% of women had GDM, and 3.0% had IGT. Fetuses of women who developed GDM compared with NGT had larger fractional arm and fractional fat arm volumes from 26 to 35 weeks, smaller fractional lean arm volume from 17 to 22 weeks, and larger abdominal area from 24 to 40 weeks. Fetuses of women with IGT had similar growth patterns, which manifested later in gestation and with larger magnitudes, and had larger fractional lean arm volume. No overall differences were observed among thigh or organ volumes across glycemic status. CONCLUSIONS Body composition differed in fetuses of GDM-complicated pregnancies, including larger arm and abdominal measures across the second and third trimesters. Patterns were similar in IGT-complicated pregnancies except that they occurred later in gestation and with larger magnitudes. Future research should explore how lifestyle and medication may alter fetal fat accumulation trajectories among hyperglycemic pregnancies.\",\"PeriodicalId\":11140,\"journal\":{\"name\":\"Diabetes Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/dc24-1068\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/dc24-1068","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Maternal Glycemic Status and Longitudinal Fetal Body Composition and Organ Volumes Based on Three-Dimensional Ultrasonography
OBJECTIVE Gestational diabetes mellitus (GDM) increases the risk of fetal overgrowth as measured by two-dimensional ultrasonography. Whether fetal three-dimensional (3D) soft tissue and organ volumes provide additional insight into fetal overgrowth is unknown. RESEARCH DESIGN AND METHODS We prospectively evaluated longitudinal 3D fetal body composition and organ volumes in a diverse US singleton pregnancy cohort (2015–2019). Women were diagnosed with GDM, impaired glucose tolerance (IGT), or normal glucose tolerance (NGT). Up to five 3D ultrasound scans measured fetal body composition and organ volumes; trajectories were modeled using linear mixed models. Overall and weekly mean differences in fetal 3D trajectories were tested across glycemic status, adjusted for covariates. RESULTS In this sample (n = 2,427), 5.2% of women had GDM, and 3.0% had IGT. Fetuses of women who developed GDM compared with NGT had larger fractional arm and fractional fat arm volumes from 26 to 35 weeks, smaller fractional lean arm volume from 17 to 22 weeks, and larger abdominal area from 24 to 40 weeks. Fetuses of women with IGT had similar growth patterns, which manifested later in gestation and with larger magnitudes, and had larger fractional lean arm volume. No overall differences were observed among thigh or organ volumes across glycemic status. CONCLUSIONS Body composition differed in fetuses of GDM-complicated pregnancies, including larger arm and abdominal measures across the second and third trimesters. Patterns were similar in IGT-complicated pregnancies except that they occurred later in gestation and with larger magnitudes. Future research should explore how lifestyle and medication may alter fetal fat accumulation trajectories among hyperglycemic pregnancies.
期刊介绍:
The journal's overarching mission can be captured by the simple word "Care," reflecting its commitment to enhancing patient well-being. Diabetes Care aims to support better patient care by addressing the comprehensive needs of healthcare professionals dedicated to managing diabetes.
Diabetes Care serves as a valuable resource for healthcare practitioners, aiming to advance knowledge, foster research, and improve diabetes management. The journal publishes original research across various categories, including Clinical Care, Education, Nutrition, Psychosocial Research, Epidemiology, Health Services Research, Emerging Treatments and Technologies, Pathophysiology, Complications, and Cardiovascular and Metabolic Risk. Additionally, Diabetes Care features ADA statements, consensus reports, review articles, letters to the editor, and health/medical news, appealing to a diverse audience of physicians, researchers, psychologists, educators, and other healthcare professionals.