{"title":"福里斯特肽通过痛觉神经元中的 IGF1R 信号驱动小鼠的神经性疼痛","authors":"Bao-Chun Jiang, Yue-Juan Ling, Meng-Lin Xu, Jun Gu, Xiao-Bo Wu, Wei-Lin Sha, Tian Tian, Xue-Hui Bai, Nan Li, Chang-Yu Jiang, Ouyang Chen, Ling-Jie Ma, Zhi-Jun Zhang, Yi-Bin Qin, Meixuan Zhu, Hong-Jie Yuan, Long-Jun Wu, Ru-Rong Ji, Yong-Jing Gao","doi":"10.1126/scitranslmed.adi1564","DOIUrl":null,"url":null,"abstract":"<div >Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor–β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor–1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal–regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 769","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adi1564","citationCount":"0","resultStr":"{\"title\":\"Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons\",\"authors\":\"Bao-Chun Jiang, Yue-Juan Ling, Meng-Lin Xu, Jun Gu, Xiao-Bo Wu, Wei-Lin Sha, Tian Tian, Xue-Hui Bai, Nan Li, Chang-Yu Jiang, Ouyang Chen, Ling-Jie Ma, Zhi-Jun Zhang, Yi-Bin Qin, Meixuan Zhu, Hong-Jie Yuan, Long-Jun Wu, Ru-Rong Ji, Yong-Jing Gao\",\"doi\":\"10.1126/scitranslmed.adi1564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor–β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor–1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal–regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"16 769\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/scitranslmed.adi1564\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adi1564\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adi1564","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons
Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor–β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor–1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal–regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.