{"title":"SPAG4 通过激活 PI3K/Akt 信号通路增强结直肠癌细胞的线粒体呼吸和有氧糖酵解功能","authors":"Jiehao Zhou, Haobo Sun, Hang Zhou, Ying Liu","doi":"10.1002/jbt.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n <p>Aerobic glycolysis plays a pivotal role in the progression of tumors. Previously, a glycolysis-associated prognostic model in CRC was constructed and the glycolysis-related gene SPAG4 was discovered to be upregulated in CRC and was correlated with adverse prognosis. To date, however, no study has elucidated the specific role of SPAG4 in the development of CRC. In our study, CRC cells were transfected with si-SPAG4 or OE-SPAG4 to evaluate the influence of SPAG4 silencing or overexpression on CRC cell malignant behaviors. CRC cell proliferation and metastasis were detected via CCK-8, colony formation, and Transwell assays. The oxygen consumption rate and extracellular acidification rate of CRC cells were determined by using an XF24 extracellular flux analyzer. The expression of SPAG4, key mitochondrial markers (NDUFA1, SDHB, ATP5A, and PGC-1α), key enzymes involved in glycolysis (GLUT1, HK2, LDHA, PKM2, and PFK1), and PI3K/Akt pathway-molecules and downstream transcription factor HIF-1α was assessed by RT-qPCR and western blot analysis. SPAG4 expression in CRC and normal tissue samples was tested through immunohistochemical staining. Finally, SPAG4-overexpressed CRC cells were treated with LY294002 to validate the inhibition of PI3K/Akt pathway on CRC cell malignant phenotypes. Our results showed that SPAG4 was upregulated in CRC cells and tissues, and high expression SPAG4 predicted shorter overall survival time. SPAG4 knockdown inhibited while SPAG4 overexpression enhanced CRC cell proliferation, migration, invasion, mitochondrial respiration, and aerobic glycolysis. Overexpressing SPAG4 elevated p-PI3K, p-Akt, p-mTOR, and HIF-1α protein levels, which were restored after LY294002 treatment. Furthermore, LY294002 abolished the promotion of SPAG4 overexpression on CRC malignant phenotypes. Collectively, SPAG4 plays an oncogenic role in CRC by promoting mitochondrial respiration and aerobic glycolysis through activating the PI3K/Akt signaling. These findings suggest that inhibition of SPAG4-mediated glucose metabolism may represent a potential strategy for the clinical treatment of CRC.</p>\n </section>\n </div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPAG4 enhances mitochondrial respiration and aerobic glycolysis in colorectal cancer cells by activating the PI3K/Akt signaling pathway\",\"authors\":\"Jiehao Zhou, Haobo Sun, Hang Zhou, Ying Liu\",\"doi\":\"10.1002/jbt.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n <p>Aerobic glycolysis plays a pivotal role in the progression of tumors. Previously, a glycolysis-associated prognostic model in CRC was constructed and the glycolysis-related gene SPAG4 was discovered to be upregulated in CRC and was correlated with adverse prognosis. To date, however, no study has elucidated the specific role of SPAG4 in the development of CRC. In our study, CRC cells were transfected with si-SPAG4 or OE-SPAG4 to evaluate the influence of SPAG4 silencing or overexpression on CRC cell malignant behaviors. CRC cell proliferation and metastasis were detected via CCK-8, colony formation, and Transwell assays. The oxygen consumption rate and extracellular acidification rate of CRC cells were determined by using an XF24 extracellular flux analyzer. The expression of SPAG4, key mitochondrial markers (NDUFA1, SDHB, ATP5A, and PGC-1α), key enzymes involved in glycolysis (GLUT1, HK2, LDHA, PKM2, and PFK1), and PI3K/Akt pathway-molecules and downstream transcription factor HIF-1α was assessed by RT-qPCR and western blot analysis. SPAG4 expression in CRC and normal tissue samples was tested through immunohistochemical staining. Finally, SPAG4-overexpressed CRC cells were treated with LY294002 to validate the inhibition of PI3K/Akt pathway on CRC cell malignant phenotypes. Our results showed that SPAG4 was upregulated in CRC cells and tissues, and high expression SPAG4 predicted shorter overall survival time. SPAG4 knockdown inhibited while SPAG4 overexpression enhanced CRC cell proliferation, migration, invasion, mitochondrial respiration, and aerobic glycolysis. Overexpressing SPAG4 elevated p-PI3K, p-Akt, p-mTOR, and HIF-1α protein levels, which were restored after LY294002 treatment. Furthermore, LY294002 abolished the promotion of SPAG4 overexpression on CRC malignant phenotypes. Collectively, SPAG4 plays an oncogenic role in CRC by promoting mitochondrial respiration and aerobic glycolysis through activating the PI3K/Akt signaling. These findings suggest that inhibition of SPAG4-mediated glucose metabolism may represent a potential strategy for the clinical treatment of CRC.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70009\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70009","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SPAG4 enhances mitochondrial respiration and aerobic glycolysis in colorectal cancer cells by activating the PI3K/Akt signaling pathway
Aerobic glycolysis plays a pivotal role in the progression of tumors. Previously, a glycolysis-associated prognostic model in CRC was constructed and the glycolysis-related gene SPAG4 was discovered to be upregulated in CRC and was correlated with adverse prognosis. To date, however, no study has elucidated the specific role of SPAG4 in the development of CRC. In our study, CRC cells were transfected with si-SPAG4 or OE-SPAG4 to evaluate the influence of SPAG4 silencing or overexpression on CRC cell malignant behaviors. CRC cell proliferation and metastasis were detected via CCK-8, colony formation, and Transwell assays. The oxygen consumption rate and extracellular acidification rate of CRC cells were determined by using an XF24 extracellular flux analyzer. The expression of SPAG4, key mitochondrial markers (NDUFA1, SDHB, ATP5A, and PGC-1α), key enzymes involved in glycolysis (GLUT1, HK2, LDHA, PKM2, and PFK1), and PI3K/Akt pathway-molecules and downstream transcription factor HIF-1α was assessed by RT-qPCR and western blot analysis. SPAG4 expression in CRC and normal tissue samples was tested through immunohistochemical staining. Finally, SPAG4-overexpressed CRC cells were treated with LY294002 to validate the inhibition of PI3K/Akt pathway on CRC cell malignant phenotypes. Our results showed that SPAG4 was upregulated in CRC cells and tissues, and high expression SPAG4 predicted shorter overall survival time. SPAG4 knockdown inhibited while SPAG4 overexpression enhanced CRC cell proliferation, migration, invasion, mitochondrial respiration, and aerobic glycolysis. Overexpressing SPAG4 elevated p-PI3K, p-Akt, p-mTOR, and HIF-1α protein levels, which were restored after LY294002 treatment. Furthermore, LY294002 abolished the promotion of SPAG4 overexpression on CRC malignant phenotypes. Collectively, SPAG4 plays an oncogenic role in CRC by promoting mitochondrial respiration and aerobic glycolysis through activating the PI3K/Akt signaling. These findings suggest that inhibition of SPAG4-mediated glucose metabolism may represent a potential strategy for the clinical treatment of CRC.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.