奇异时变布林克曼流的渐近研究及应用

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Fatma Boumiza, Jamel Ferchichi, Houcine Meftahi
{"title":"奇异时变布林克曼流的渐近研究及应用","authors":"Fatma Boumiza,&nbsp;Jamel Ferchichi,&nbsp;Houcine Meftahi","doi":"10.1007/s10440-024-00689-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we address the problem of locating point forces within a time-dependent singular Brinkman flow. The context of the study is framed as an approximation of cerebrospinal fluid (CSF) around the central nervous system, with the point forces representing a model for the blood-brain barrier. We approach the problem by reformulating the identification task as an optimization problem, employing a tracking shape functional. A notable challenge in this study arises from the irregularity in the solution of the partial differential equation (PDE), which complicates the exploration of sensitivity analysis. To overcome this issue, we employ a relaxation method and compute the topological derivative of the cost function. The topological derivative, commonly used in shape optimization problems, offers insights into how the cost function responds to small perturbations in the domain. To determine the optimal position of the point forces, we employ a one-shot algorithm based on the derived topological gradient. Finally, we present numerical results that showcase the efficiency of our method in addressing the identified problem.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"194 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Study of a Singular Time-Dependent Brinkman Flow with Application\",\"authors\":\"Fatma Boumiza,&nbsp;Jamel Ferchichi,&nbsp;Houcine Meftahi\",\"doi\":\"10.1007/s10440-024-00689-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we address the problem of locating point forces within a time-dependent singular Brinkman flow. The context of the study is framed as an approximation of cerebrospinal fluid (CSF) around the central nervous system, with the point forces representing a model for the blood-brain barrier. We approach the problem by reformulating the identification task as an optimization problem, employing a tracking shape functional. A notable challenge in this study arises from the irregularity in the solution of the partial differential equation (PDE), which complicates the exploration of sensitivity analysis. To overcome this issue, we employ a relaxation method and compute the topological derivative of the cost function. The topological derivative, commonly used in shape optimization problems, offers insights into how the cost function responds to small perturbations in the domain. To determine the optimal position of the point forces, we employ a one-shot algorithm based on the derived topological gradient. Finally, we present numerical results that showcase the efficiency of our method in addressing the identified problem.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00689-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00689-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了在随时间变化的奇异布林克曼流中定位点力的问题。研究的背景是中枢神经系统周围脑脊液(CSF)的近似,点力代表血脑屏障模型。我们采用跟踪形状函数,将识别任务重新表述为优化问题。这项研究面临的一个显著挑战是偏微分方程(PDE)解的不规则性,这使得灵敏度分析的探索变得复杂。为了克服这一问题,我们采用了松弛法,并计算了成本函数的拓扑导数。拓扑导数通常用于形状优化问题,它能帮助我们深入了解成本函数如何对域中的微小扰动做出响应。为了确定点力的最佳位置,我们采用了基于拓扑梯度推导的单次算法。最后,我们给出了数值结果,展示了我们的方法在解决已确定问题时的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotic Study of a Singular Time-Dependent Brinkman Flow with Application

Asymptotic Study of a Singular Time-Dependent Brinkman Flow with Application

In this article we address the problem of locating point forces within a time-dependent singular Brinkman flow. The context of the study is framed as an approximation of cerebrospinal fluid (CSF) around the central nervous system, with the point forces representing a model for the blood-brain barrier. We approach the problem by reformulating the identification task as an optimization problem, employing a tracking shape functional. A notable challenge in this study arises from the irregularity in the solution of the partial differential equation (PDE), which complicates the exploration of sensitivity analysis. To overcome this issue, we employ a relaxation method and compute the topological derivative of the cost function. The topological derivative, commonly used in shape optimization problems, offers insights into how the cost function responds to small perturbations in the domain. To determine the optimal position of the point forces, we employ a one-shot algorithm based on the derived topological gradient. Finally, we present numerical results that showcase the efficiency of our method in addressing the identified problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信