I. V. Byzov, S. V. Zhakov, A. A. Mysik, I. A. Kunakkuzhin
{"title":"利用核磁共振弛豫测定法确定形成水体中的锂浓度","authors":"I. V. Byzov, S. V. Zhakov, A. A. Mysik, I. A. Kunakkuzhin","doi":"10.1134/S1061830924700748","DOIUrl":null,"url":null,"abstract":"<p>A procedure for determining lithium concentration in formation waters by NMR relaxometry is proposed. The method makes it possible to quickly determine the lithium content for concentrations of industrial interest. The experiments have shown good agreement between the data obtained by the proposed method and the data obtained by the induction coupled plasma (ICP) method.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 7","pages":"835 - 839"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining Lithium Concentration in Formation Waters by NMR Relaxometry\",\"authors\":\"I. V. Byzov, S. V. Zhakov, A. A. Mysik, I. A. Kunakkuzhin\",\"doi\":\"10.1134/S1061830924700748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A procedure for determining lithium concentration in formation waters by NMR relaxometry is proposed. The method makes it possible to quickly determine the lithium content for concentrations of industrial interest. The experiments have shown good agreement between the data obtained by the proposed method and the data obtained by the induction coupled plasma (ICP) method.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":\"60 7\",\"pages\":\"835 - 839\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830924700748\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924700748","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Determining Lithium Concentration in Formation Waters by NMR Relaxometry
A procedure for determining lithium concentration in formation waters by NMR relaxometry is proposed. The method makes it possible to quickly determine the lithium content for concentrations of industrial interest. The experiments have shown good agreement between the data obtained by the proposed method and the data obtained by the induction coupled plasma (ICP) method.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).