沙丘模式的全球视角:利用大地遥感卫星图像和深度学习策略进行规模适应性分类

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Zhijia Zheng , Xiuyuan Zhang , Jiajun Li , Eslam Ali , Jinsongdi Yu , Shihong Du
{"title":"沙丘模式的全球视角:利用大地遥感卫星图像和深度学习策略进行规模适应性分类","authors":"Zhijia Zheng ,&nbsp;Xiuyuan Zhang ,&nbsp;Jiajun Li ,&nbsp;Eslam Ali ,&nbsp;Jinsongdi Yu ,&nbsp;Shihong Du","doi":"10.1016/j.isprsjprs.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Sand dune patterns (SDPs) are spatial aggregations of dunes and interdunes, exhibiting distinct morphologies and spatial structures. Recognizing global SDPs is crucial for understanding the development processes, contributing factors, and self-organization characteristics of aeolian systems. However, the diversity, complexity, and multiscale nature of global SDPs poses significant technical challenges in the classification scheme, sample collection, feature representation, and classification method. This study addresses these challenges by developing a novel global SDP classification approach based on an advanced deep-learning network. Firstly, we established a globally applicable SDP classification scheme that accommodates the diversity nature of SDPs. Secondly, we developed an SDP semantic segmentation sample dataset, which encompassed a wide array of SDP representations. Thirdly, we deployed the SegFormer network to automatically capture detailed dune structures and developed a weighted voting strategy to ensure scale adaptability. Experiments utilizing Landsat-8 imagery yielded a commendable overall accuracy (OA) of 85.43 %. Notably, most SDP types exhibited high classification accuracies, such as star dunes (97.43 %) and simple linear dunes (87.17 %). The weighted voting strategy prioritized the predictions of each type, resulting in a 1.41 %∼7.91 % improvement in OA compared to the single-scale classification and average voting methods. This innovative approach facilitated the generation of a high-quality, fine-grained, and global-scale SDP map at 30 m resolution (GSDP30), which not only directly provides the spatial distribution of global SDPs but also serves as valuable support for understanding aeolian processes. This study represents the first instance of producing such a comprehensive and globally applicable SDP map at this fine resolution.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 781-801"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global perspectives on sand dune patterns: Scale-adaptable classification using Landsat imagery and deep learning strategies\",\"authors\":\"Zhijia Zheng ,&nbsp;Xiuyuan Zhang ,&nbsp;Jiajun Li ,&nbsp;Eslam Ali ,&nbsp;Jinsongdi Yu ,&nbsp;Shihong Du\",\"doi\":\"10.1016/j.isprsjprs.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sand dune patterns (SDPs) are spatial aggregations of dunes and interdunes, exhibiting distinct morphologies and spatial structures. Recognizing global SDPs is crucial for understanding the development processes, contributing factors, and self-organization characteristics of aeolian systems. However, the diversity, complexity, and multiscale nature of global SDPs poses significant technical challenges in the classification scheme, sample collection, feature representation, and classification method. This study addresses these challenges by developing a novel global SDP classification approach based on an advanced deep-learning network. Firstly, we established a globally applicable SDP classification scheme that accommodates the diversity nature of SDPs. Secondly, we developed an SDP semantic segmentation sample dataset, which encompassed a wide array of SDP representations. Thirdly, we deployed the SegFormer network to automatically capture detailed dune structures and developed a weighted voting strategy to ensure scale adaptability. Experiments utilizing Landsat-8 imagery yielded a commendable overall accuracy (OA) of 85.43 %. Notably, most SDP types exhibited high classification accuracies, such as star dunes (97.43 %) and simple linear dunes (87.17 %). The weighted voting strategy prioritized the predictions of each type, resulting in a 1.41 %∼7.91 % improvement in OA compared to the single-scale classification and average voting methods. This innovative approach facilitated the generation of a high-quality, fine-grained, and global-scale SDP map at 30 m resolution (GSDP30), which not only directly provides the spatial distribution of global SDPs but also serves as valuable support for understanding aeolian processes. This study represents the first instance of producing such a comprehensive and globally applicable SDP map at this fine resolution.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 781-801\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003794\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003794","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

沙丘模式(SDPs)是沙丘和沙丘间的空间聚集,表现出独特的形态和空间结构。认识全球沙丘形态对于了解风化系统的发展过程、成因和自组织特征至关重要。然而,全球 SDP 的多样性、复杂性和多尺度性在分类方案、样本收集、特征表示和分类方法等方面带来了巨大的技术挑战。本研究通过开发一种基于先进深度学习网络的新型全局 SDP 分类方法来应对这些挑战。首先,我们建立了一种全球适用的 SDP 分类方案,该方案考虑到了 SDP 的多样性。其次,我们开发了一个 SDP 语义分割样本数据集,其中包含了大量 SDP 表征。第三,我们部署了 SegFormer 网络来自动捕捉沙丘的详细结构,并开发了一种加权投票策略来确保规模适应性。利用 Landsat-8 图像进行的实验取得了令人称道的 85.43% 的总体准确率 (OA)。值得注意的是,大多数 SDP 类型都表现出较高的分类准确率,如星形沙丘(97.43%)和简单线性沙丘(87.17%)。加权投票策略对每种类型的预测进行了优先排序,与单尺度分类法和平均投票法相比,OA 提高了 1.41 %∼7.91 %。这种创新方法有助于生成 30 米分辨率的高质量、细粒度和全球尺度 SDP 地图(GSDP30),它不仅直接提供了全球 SDP 的空间分布情况,还为了解风化过程提供了宝贵的支持。这项研究是首次以如此精细的分辨率绘制如此全面和全球适用的 SDP 地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global perspectives on sand dune patterns: Scale-adaptable classification using Landsat imagery and deep learning strategies
Sand dune patterns (SDPs) are spatial aggregations of dunes and interdunes, exhibiting distinct morphologies and spatial structures. Recognizing global SDPs is crucial for understanding the development processes, contributing factors, and self-organization characteristics of aeolian systems. However, the diversity, complexity, and multiscale nature of global SDPs poses significant technical challenges in the classification scheme, sample collection, feature representation, and classification method. This study addresses these challenges by developing a novel global SDP classification approach based on an advanced deep-learning network. Firstly, we established a globally applicable SDP classification scheme that accommodates the diversity nature of SDPs. Secondly, we developed an SDP semantic segmentation sample dataset, which encompassed a wide array of SDP representations. Thirdly, we deployed the SegFormer network to automatically capture detailed dune structures and developed a weighted voting strategy to ensure scale adaptability. Experiments utilizing Landsat-8 imagery yielded a commendable overall accuracy (OA) of 85.43 %. Notably, most SDP types exhibited high classification accuracies, such as star dunes (97.43 %) and simple linear dunes (87.17 %). The weighted voting strategy prioritized the predictions of each type, resulting in a 1.41 %∼7.91 % improvement in OA compared to the single-scale classification and average voting methods. This innovative approach facilitated the generation of a high-quality, fine-grained, and global-scale SDP map at 30 m resolution (GSDP30), which not only directly provides the spatial distribution of global SDPs but also serves as valuable support for understanding aeolian processes. This study represents the first instance of producing such a comprehensive and globally applicable SDP map at this fine resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信