{"title":"流过入射角为 45∘、自由振动的椭圆形圆柱体","authors":"","doi":"10.1016/j.jfluidstructs.2024.104201","DOIUrl":null,"url":null,"abstract":"<div><div>Undamped transverse-only flow-induced vibrations (FIV) of an elliptic cylinder of mass ratio, <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>10</mn></mrow></math></span> at 45° incidence are investigated via two-dimensional computations at Reynolds numbers, <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span> and 200. Using quasi-steady theory, it is illustrated that the asymmetric oscillator does not gallop at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span> and 200. Resolution of hysteresis-free solutions at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span> is a novel finding. As compared to <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span>, response at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>200</mn></mrow></math></span> is associated with additional branches: a lower branch, a terminal branch and a third regime of desynchronization. Assuming harmonic lift and response, mathematical expressions are obtained for modified dimensionless circular frequency, <span><math><msup><mrow><msup><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow><mrow><mo>∗</mo></mrow></msup></mrow><mrow><mn>2</mn></mrow></msup></math></span> and modified damping. The variation of <span><math><msup><mrow><msup><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow><mrow><mo>∗</mo></mrow></msup></mrow><mrow><mn>2</mn></mrow></msup></math></span> with reduced speed, <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> reveals excellent collapse with predicted dynamic response. For FIV at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>200</mn></mrow></math></span> and not at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span>, a second regime of significant vibrations develops in the neighbourhood of <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>8</mn></mrow></math></span> in addition to the first one around <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>4</mn></mrow></math></span>. The period doubling bifurcation occurring around <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>8</mn></mrow></math></span> is an 1:2 sub-harmonic synchronization; it halves the oscillation frequency that in turn closely approaches reduced natural frequency of the cylinder. In this regime, the wake mode is found to be 2(2S). Leontini et al. (2018) resolved periodic doubling bifurcation for FIV of an inclined elliptic cylinder using a low <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of unity. The occurrences of second lock-in and period doubling therefore appear not to be a function of <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>; they are rather Reynolds number phenomena.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow past a freely vibrating elliptic cylinder at 45∘ incidence\",\"authors\":\"\",\"doi\":\"10.1016/j.jfluidstructs.2024.104201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Undamped transverse-only flow-induced vibrations (FIV) of an elliptic cylinder of mass ratio, <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>10</mn></mrow></math></span> at 45° incidence are investigated via two-dimensional computations at Reynolds numbers, <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span> and 200. Using quasi-steady theory, it is illustrated that the asymmetric oscillator does not gallop at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span> and 200. Resolution of hysteresis-free solutions at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span> is a novel finding. As compared to <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span>, response at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>200</mn></mrow></math></span> is associated with additional branches: a lower branch, a terminal branch and a third regime of desynchronization. Assuming harmonic lift and response, mathematical expressions are obtained for modified dimensionless circular frequency, <span><math><msup><mrow><msup><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow><mrow><mo>∗</mo></mrow></msup></mrow><mrow><mn>2</mn></mrow></msup></math></span> and modified damping. The variation of <span><math><msup><mrow><msup><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow><mrow><mo>∗</mo></mrow></msup></mrow><mrow><mn>2</mn></mrow></msup></math></span> with reduced speed, <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> reveals excellent collapse with predicted dynamic response. For FIV at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>200</mn></mrow></math></span> and not at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>100</mn></mrow></math></span>, a second regime of significant vibrations develops in the neighbourhood of <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>8</mn></mrow></math></span> in addition to the first one around <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>4</mn></mrow></math></span>. The period doubling bifurcation occurring around <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>8</mn></mrow></math></span> is an 1:2 sub-harmonic synchronization; it halves the oscillation frequency that in turn closely approaches reduced natural frequency of the cylinder. In this regime, the wake mode is found to be 2(2S). Leontini et al. (2018) resolved periodic doubling bifurcation for FIV of an inclined elliptic cylinder using a low <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of unity. The occurrences of second lock-in and period doubling therefore appear not to be a function of <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>; they are rather Reynolds number phenomena.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001361\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001361","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Flow past a freely vibrating elliptic cylinder at 45∘ incidence
Undamped transverse-only flow-induced vibrations (FIV) of an elliptic cylinder of mass ratio, at 45° incidence are investigated via two-dimensional computations at Reynolds numbers, and 200. Using quasi-steady theory, it is illustrated that the asymmetric oscillator does not gallop at and 200. Resolution of hysteresis-free solutions at is a novel finding. As compared to , response at is associated with additional branches: a lower branch, a terminal branch and a third regime of desynchronization. Assuming harmonic lift and response, mathematical expressions are obtained for modified dimensionless circular frequency, and modified damping. The variation of with reduced speed, reveals excellent collapse with predicted dynamic response. For FIV at and not at , a second regime of significant vibrations develops in the neighbourhood of in addition to the first one around . The period doubling bifurcation occurring around is an 1:2 sub-harmonic synchronization; it halves the oscillation frequency that in turn closely approaches reduced natural frequency of the cylinder. In this regime, the wake mode is found to be 2(2S). Leontini et al. (2018) resolved periodic doubling bifurcation for FIV of an inclined elliptic cylinder using a low of unity. The occurrences of second lock-in and period doubling therefore appear not to be a function of ; they are rather Reynolds number phenomena.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.