{"title":"推进 IoMT 安全:采用 PUF 和模糊逻辑技术的双因素认证模型","authors":"Sidra Kalam, Ajit Kumar Keshri","doi":"10.1016/j.cose.2024.104138","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid integration of Internet of Things technologies in healthcare has catalyzed the development of the Internet of Medical Things, markedly enhanced patient care while posing significant security risks. This paper introduces a comprehensive computational framework to safeguard Internet of Medical Things devices and healthcare providers through a sophisticated registration and authentication process. Our model incorporates cryptographic technologies such as Physical Unclonable Functions, fuzzy extractors, and hash functions to bolster the security during the registration and authentication processes for Internet of Medical Things devices and healthcare providers. The Physical Unclonable Function module enhances device security by producing unique, non-replicable responses for device authentication, significantly reinforcing the system's defense against physical and cloning attacks. Furthermore, the model leverages fuzzy logic for the real-time classification of patient health states, enhancing the decision-making accuracy. A comparative analysis confirms that our model exceeds existing models in communication cost, computational efficiency and security. The proposed scheme has been rigorously tested against various attacks using the Scyther tool. By employing a unique identifier generation method through Physical Unclonable Function and utilizing fuzzy logic for secure data transmission and patient classification, our framework addresses vulnerabilities such as man-in-the-middle, denial of service, impersonation, identity guessing, password guessing and replay attacks, which are prevalent in current Internet of Medical Things frameworks.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104138"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing IoMT security: A two-factor authentication model employing PUF and Fuzzy logic techniques\",\"authors\":\"Sidra Kalam, Ajit Kumar Keshri\",\"doi\":\"10.1016/j.cose.2024.104138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid integration of Internet of Things technologies in healthcare has catalyzed the development of the Internet of Medical Things, markedly enhanced patient care while posing significant security risks. This paper introduces a comprehensive computational framework to safeguard Internet of Medical Things devices and healthcare providers through a sophisticated registration and authentication process. Our model incorporates cryptographic technologies such as Physical Unclonable Functions, fuzzy extractors, and hash functions to bolster the security during the registration and authentication processes for Internet of Medical Things devices and healthcare providers. The Physical Unclonable Function module enhances device security by producing unique, non-replicable responses for device authentication, significantly reinforcing the system's defense against physical and cloning attacks. Furthermore, the model leverages fuzzy logic for the real-time classification of patient health states, enhancing the decision-making accuracy. A comparative analysis confirms that our model exceeds existing models in communication cost, computational efficiency and security. The proposed scheme has been rigorously tested against various attacks using the Scyther tool. By employing a unique identifier generation method through Physical Unclonable Function and utilizing fuzzy logic for secure data transmission and patient classification, our framework addresses vulnerabilities such as man-in-the-middle, denial of service, impersonation, identity guessing, password guessing and replay attacks, which are prevalent in current Internet of Medical Things frameworks.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104138\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004437\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004437","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Advancing IoMT security: A two-factor authentication model employing PUF and Fuzzy logic techniques
The rapid integration of Internet of Things technologies in healthcare has catalyzed the development of the Internet of Medical Things, markedly enhanced patient care while posing significant security risks. This paper introduces a comprehensive computational framework to safeguard Internet of Medical Things devices and healthcare providers through a sophisticated registration and authentication process. Our model incorporates cryptographic technologies such as Physical Unclonable Functions, fuzzy extractors, and hash functions to bolster the security during the registration and authentication processes for Internet of Medical Things devices and healthcare providers. The Physical Unclonable Function module enhances device security by producing unique, non-replicable responses for device authentication, significantly reinforcing the system's defense against physical and cloning attacks. Furthermore, the model leverages fuzzy logic for the real-time classification of patient health states, enhancing the decision-making accuracy. A comparative analysis confirms that our model exceeds existing models in communication cost, computational efficiency and security. The proposed scheme has been rigorously tested against various attacks using the Scyther tool. By employing a unique identifier generation method through Physical Unclonable Function and utilizing fuzzy logic for secure data transmission and patient classification, our framework addresses vulnerabilities such as man-in-the-middle, denial of service, impersonation, identity guessing, password guessing and replay attacks, which are prevalent in current Internet of Medical Things frameworks.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.