抛物线卡兹丹-卢兹蒂格多项式不变性猜想之间的等价性

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.026
Paolo Sentinelli
{"title":"抛物线卡兹丹-卢兹蒂格多项式不变性猜想之间的等价性","authors":"Paolo Sentinelli","doi":"10.1016/j.jalgebra.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that the combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials, formulated by Mario Marietti, is equivalent to its restriction to maximal quotients. This equivalence lies at the other extreme in respect to the equivalence, recently proved by Barkley and Gaetz, with the invariance conjecture for Kazhdan-Lusztig polynomials, which turns out to be equivalent to the conjecture for maximal quotients.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence between invariance conjectures for parabolic Kazhdan-Lusztig polynomials\",\"authors\":\"Paolo Sentinelli\",\"doi\":\"10.1016/j.jalgebra.2024.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that the combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials, formulated by Mario Marietti, is equivalent to its restriction to maximal quotients. This equivalence lies at the other extreme in respect to the equivalence, recently proved by Barkley and Gaetz, with the invariance conjecture for Kazhdan-Lusztig polynomials, which turns out to be equivalent to the conjecture for maximal quotients.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了马里奥-马里埃蒂提出的抛物线卡兹丹-卢兹蒂格多项式的组合不变性猜想等同于其对最大商的限制。这一等价性与巴克利和盖茨最近证明的卡兹丹-卢兹蒂格多项式不变性猜想的等价性处于另一个极端,后者与最大商的猜想等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equivalence between invariance conjectures for parabolic Kazhdan-Lusztig polynomials
We prove that the combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials, formulated by Mario Marietti, is equivalent to its restriction to maximal quotients. This equivalence lies at the other extreme in respect to the equivalence, recently proved by Barkley and Gaetz, with the invariance conjecture for Kazhdan-Lusztig polynomials, which turns out to be equivalent to the conjecture for maximal quotients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信