{"title":"基于模糊粗糙集的缺失标签多标签学习矩阵因式分解算法","authors":"Jiang Deng , Degang Chen , Hui Wang , Ruifeng Shi","doi":"10.1016/j.fss.2024.109143","DOIUrl":null,"url":null,"abstract":"<div><div>In multi-label learning, samples of practical classification task may associated with multiple labels, it is challenging to acquire all labels of the training samples, the rapid expansion of the label space and the significant increase in annotation costs have exacerbated the issue of missing labels in multi-label learning. By utilizing the low rank structure of the label matrix, missing labels can be effectively recovered with matrix factorization technique. Nevertheless, current approaches disregard the potential correlation between the feature space and the multi-dimensional label data. In this paper, key features associated to different labels are extracted and then a non-negative matrix factorization algorithm is proposed for recover missing labels. Firstly, the fuzzy rough set theory is used to analyze the consistency between label matrix and feature space, potential feature information is employed to determine the latent variable dimension in non-negative matrix decomposition and the symbolic label matrix is also converted to a numerical one by means of the lower approximation operator. Then, feature-based manifold regularization and local label correlations are used to model the multi-label completion algorithm. In order to verify the effectiveness in dealing incomplete label data, comparison experiments with varying levels of missing values are designed, the experiments show that compared with the state-of-the-art algorithm, the proposed algorithm is effective in the completion of missing labels. In addition, the sensitivity analysis experiments also show that the proposed method has good stability.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix factorization algorithm for multi-label learning with missing labels based on fuzzy rough set\",\"authors\":\"Jiang Deng , Degang Chen , Hui Wang , Ruifeng Shi\",\"doi\":\"10.1016/j.fss.2024.109143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In multi-label learning, samples of practical classification task may associated with multiple labels, it is challenging to acquire all labels of the training samples, the rapid expansion of the label space and the significant increase in annotation costs have exacerbated the issue of missing labels in multi-label learning. By utilizing the low rank structure of the label matrix, missing labels can be effectively recovered with matrix factorization technique. Nevertheless, current approaches disregard the potential correlation between the feature space and the multi-dimensional label data. In this paper, key features associated to different labels are extracted and then a non-negative matrix factorization algorithm is proposed for recover missing labels. Firstly, the fuzzy rough set theory is used to analyze the consistency between label matrix and feature space, potential feature information is employed to determine the latent variable dimension in non-negative matrix decomposition and the symbolic label matrix is also converted to a numerical one by means of the lower approximation operator. Then, feature-based manifold regularization and local label correlations are used to model the multi-label completion algorithm. In order to verify the effectiveness in dealing incomplete label data, comparison experiments with varying levels of missing values are designed, the experiments show that compared with the state-of-the-art algorithm, the proposed algorithm is effective in the completion of missing labels. In addition, the sensitivity analysis experiments also show that the proposed method has good stability.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424002896\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424002896","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Matrix factorization algorithm for multi-label learning with missing labels based on fuzzy rough set
In multi-label learning, samples of practical classification task may associated with multiple labels, it is challenging to acquire all labels of the training samples, the rapid expansion of the label space and the significant increase in annotation costs have exacerbated the issue of missing labels in multi-label learning. By utilizing the low rank structure of the label matrix, missing labels can be effectively recovered with matrix factorization technique. Nevertheless, current approaches disregard the potential correlation between the feature space and the multi-dimensional label data. In this paper, key features associated to different labels are extracted and then a non-negative matrix factorization algorithm is proposed for recover missing labels. Firstly, the fuzzy rough set theory is used to analyze the consistency between label matrix and feature space, potential feature information is employed to determine the latent variable dimension in non-negative matrix decomposition and the symbolic label matrix is also converted to a numerical one by means of the lower approximation operator. Then, feature-based manifold regularization and local label correlations are used to model the multi-label completion algorithm. In order to verify the effectiveness in dealing incomplete label data, comparison experiments with varying levels of missing values are designed, the experiments show that compared with the state-of-the-art algorithm, the proposed algorithm is effective in the completion of missing labels. In addition, the sensitivity analysis experiments also show that the proposed method has good stability.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.