{"title":"相对单一性","authors":"Nathanael Arkor , Dylan McDermott","doi":"10.1016/j.jalgebra.2024.08.040","DOIUrl":null,"url":null,"abstract":"<div><div>We establish a relative monadicity theorem for relative monads with dense roots in a virtual equipment, specialising to a relative monadicity theorem for enriched relative monads. In particular, for a dense <figure><img></figure>-functor <span><math><mi>j</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>E</mi></math></span>, a <figure><img></figure>-functor <span><math><mi>r</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>E</mi></math></span> is <em>j</em>-monadic if and only if <em>r</em> admits a left <em>j</em>-relative adjoint and creates <em>j</em>-absolute colimits. This provides a refinement of the classical monadicity theorem – characterising those categories whose objects are given by those of <em>E</em> equipped with algebraic structure – in which the arities of the algebraic operations are valued in <em>A</em>. In particular, when <span><math><mi>j</mi><mo>=</mo><mn>1</mn></math></span>, we recover a formal monadicity theorem. Furthermore, we examine the interaction between the pasting law for relative adjunctions and relative monadicity. As a consequence, we derive necessary and sufficient conditions for the (<em>j</em>-relative) monadicity of the composite of a <figure><img></figure>-functor with a (<em>j</em>-relatively) monadic <figure><img></figure>-functor.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative monadicity\",\"authors\":\"Nathanael Arkor , Dylan McDermott\",\"doi\":\"10.1016/j.jalgebra.2024.08.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish a relative monadicity theorem for relative monads with dense roots in a virtual equipment, specialising to a relative monadicity theorem for enriched relative monads. In particular, for a dense <figure><img></figure>-functor <span><math><mi>j</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>E</mi></math></span>, a <figure><img></figure>-functor <span><math><mi>r</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>E</mi></math></span> is <em>j</em>-monadic if and only if <em>r</em> admits a left <em>j</em>-relative adjoint and creates <em>j</em>-absolute colimits. This provides a refinement of the classical monadicity theorem – characterising those categories whose objects are given by those of <em>E</em> equipped with algebraic structure – in which the arities of the algebraic operations are valued in <em>A</em>. In particular, when <span><math><mi>j</mi><mo>=</mo><mn>1</mn></math></span>, we recover a formal monadicity theorem. Furthermore, we examine the interaction between the pasting law for relative adjunctions and relative monadicity. As a consequence, we derive necessary and sufficient conditions for the (<em>j</em>-relative) monadicity of the composite of a <figure><img></figure>-functor with a (<em>j</em>-relatively) monadic <figure><img></figure>-functor.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们为虚拟设备中具有稠密根的相对单子建立了一个相对单子性定理,并专门为丰富的相对单子建立了一个相对单子性定理。具体地说,对于一个致密的-矢量 j:A→E, 一个-矢量 r:D→E 是 j-单元的,当且仅当 r 允许一个左 j-相对邻接并产生 j-绝对列。这就提供了经典一元性定理的细化--它描述了那些对象由 E 中配备代数结构的对象给出的范畴--其中代数运算的算术值在 A 中。此外,我们还考察了相对邻接的粘贴定律与相对一元性之间的相互作用。因此,我们推导出了一个-矢量与一个(j-相对)单矢量复合的(j-相对)单矢量的必要条件和充分条件。
We establish a relative monadicity theorem for relative monads with dense roots in a virtual equipment, specialising to a relative monadicity theorem for enriched relative monads. In particular, for a dense -functor , a -functor is j-monadic if and only if r admits a left j-relative adjoint and creates j-absolute colimits. This provides a refinement of the classical monadicity theorem – characterising those categories whose objects are given by those of E equipped with algebraic structure – in which the arities of the algebraic operations are valued in A. In particular, when , we recover a formal monadicity theorem. Furthermore, we examine the interaction between the pasting law for relative adjunctions and relative monadicity. As a consequence, we derive necessary and sufficient conditions for the (j-relative) monadicity of the composite of a -functor with a (j-relatively) monadic -functor.