{"title":"Sp(4) 和 Sp(6) 中的薄单色性","authors":"Jitendra Bajpai , Daniele Dona , Martin Nitsche","doi":"10.1016/j.jalgebra.2024.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the thinness of hypergeometric groups of type <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> and <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span> by applying a new approach of computer-assisted ping-pong. We prove the thinness of 17 hypergeometric groups with maximally unipotent monodromy in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, completing the classification of all 40 such groups into arithmetic and thin cases.</div><div>In addition, we establish the thinness of an additional 46 hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, and of three hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, completing the classification of all <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> hypergeometric groups. To the best of our knowledge, this article produces the first 63 examples in the cyclotomic family of Zariski dense non-arithmetic hypergeometric monodromy groups of real rank three.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin monodromy in Sp(4) and Sp(6)\",\"authors\":\"Jitendra Bajpai , Daniele Dona , Martin Nitsche\",\"doi\":\"10.1016/j.jalgebra.2024.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the thinness of hypergeometric groups of type <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> and <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span> by applying a new approach of computer-assisted ping-pong. We prove the thinness of 17 hypergeometric groups with maximally unipotent monodromy in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, completing the classification of all 40 such groups into arithmetic and thin cases.</div><div>In addition, we establish the thinness of an additional 46 hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, and of three hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, completing the classification of all <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> hypergeometric groups. To the best of our knowledge, this article produces the first 63 examples in the cyclotomic family of Zariski dense non-arithmetic hypergeometric monodromy groups of real rank three.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We explore the thinness of hypergeometric groups of type and by applying a new approach of computer-assisted ping-pong. We prove the thinness of 17 hypergeometric groups with maximally unipotent monodromy in , completing the classification of all 40 such groups into arithmetic and thin cases.
In addition, we establish the thinness of an additional 46 hypergeometric groups in , and of three hypergeometric groups in , completing the classification of all hypergeometric groups. To the best of our knowledge, this article produces the first 63 examples in the cyclotomic family of Zariski dense non-arithmetic hypergeometric monodromy groups of real rank three.