Sp(4) 和 Sp(6) 中的薄单色性

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.022
Jitendra Bajpai , Daniele Dona , Martin Nitsche
{"title":"Sp(4) 和 Sp(6) 中的薄单色性","authors":"Jitendra Bajpai ,&nbsp;Daniele Dona ,&nbsp;Martin Nitsche","doi":"10.1016/j.jalgebra.2024.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the thinness of hypergeometric groups of type <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> and <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span> by applying a new approach of computer-assisted ping-pong. We prove the thinness of 17 hypergeometric groups with maximally unipotent monodromy in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, completing the classification of all 40 such groups into arithmetic and thin cases.</div><div>In addition, we establish the thinness of an additional 46 hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, and of three hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, completing the classification of all <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> hypergeometric groups. To the best of our knowledge, this article produces the first 63 examples in the cyclotomic family of Zariski dense non-arithmetic hypergeometric monodromy groups of real rank three.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin monodromy in Sp(4) and Sp(6)\",\"authors\":\"Jitendra Bajpai ,&nbsp;Daniele Dona ,&nbsp;Martin Nitsche\",\"doi\":\"10.1016/j.jalgebra.2024.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the thinness of hypergeometric groups of type <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> and <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span> by applying a new approach of computer-assisted ping-pong. We prove the thinness of 17 hypergeometric groups with maximally unipotent monodromy in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, completing the classification of all 40 such groups into arithmetic and thin cases.</div><div>In addition, we establish the thinness of an additional 46 hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>6</mn><mo>)</mo></math></span>, and of three hypergeometric groups in <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, completing the classification of all <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> hypergeometric groups. To the best of our knowledge, this article produces the first 63 examples in the cyclotomic family of Zariski dense non-arithmetic hypergeometric monodromy groups of real rank three.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用计算机辅助乒乓球的新方法,探索了 Sp(4) 和 Sp(6) 型超几何群的稀疏性。我们证明了 Sp(6) 中 17 个具有最大单势单色性的超几何群的稀疏性,完成了所有 40 个此类群的算术稀疏性分类。此外,我们还建立了 Sp(6) 中另外 46 个超几何群和 Sp(4) 中 3 个超几何群的稀疏性,完成了所有 Sp(4) 超几何群的分类。据我们所知,这篇文章在实秩为三的扎里斯基密集非算术超几何单色群的旋光族中首次提出了 63 个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Thin monodromy in Sp(4) and Sp(6)
We explore the thinness of hypergeometric groups of type Sp(4) and Sp(6) by applying a new approach of computer-assisted ping-pong. We prove the thinness of 17 hypergeometric groups with maximally unipotent monodromy in Sp(6), completing the classification of all 40 such groups into arithmetic and thin cases.
In addition, we establish the thinness of an additional 46 hypergeometric groups in Sp(6), and of three hypergeometric groups in Sp(4), completing the classification of all Sp(4) hypergeometric groups. To the best of our knowledge, this article produces the first 63 examples in the cyclotomic family of Zariski dense non-arithmetic hypergeometric monodromy groups of real rank three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信