{"title":"准阿贝尔函数范畴中的伽罗瓦理论和同源性","authors":"Nadja Egner","doi":"10.1016/j.jalgebra.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>Given a finite category <span><math><mi>T</mi></math></span>, we consider the functor category <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <span><math><mi>A</mi></math></span> can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in <span><math><mi>A</mi></math></span>, such as the categories of internal <em>n</em>-fold groupoids, are equivalent to functor categories <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> for a suitable category <span><math><mi>T</mi></math></span>. For a replete full subcategory <span><math><mi>S</mi></math></span> of <span><math><mi>T</mi></math></span>, we define <span><math><mi>F</mi></math></span> to be the full subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> whose objects are given by the functors <span><math><mi>F</mi><mo>:</mo><mi>T</mi><mo>→</mo><mi>A</mi></math></span> with <span><math><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>T</mi><mo>∉</mo><mi>S</mi></math></span>. We prove that <span><math><mi>F</mi></math></span> is a torsion-free Birkhoff subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>. This allows us to study (higher) central extensions from categorical Galois theory in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> with respect to <span><math><mi>F</mi></math></span> and generalized Hopf formulae for homology.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois theory and homology in quasi-abelian functor categories\",\"authors\":\"Nadja Egner\",\"doi\":\"10.1016/j.jalgebra.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a finite category <span><math><mi>T</mi></math></span>, we consider the functor category <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <span><math><mi>A</mi></math></span> can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in <span><math><mi>A</mi></math></span>, such as the categories of internal <em>n</em>-fold groupoids, are equivalent to functor categories <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> for a suitable category <span><math><mi>T</mi></math></span>. For a replete full subcategory <span><math><mi>S</mi></math></span> of <span><math><mi>T</mi></math></span>, we define <span><math><mi>F</mi></math></span> to be the full subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> whose objects are given by the functors <span><math><mi>F</mi><mo>:</mo><mi>T</mi><mo>→</mo><mi>A</mi></math></span> with <span><math><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>T</mi><mo>∉</mo><mi>S</mi></math></span>. We prove that <span><math><mi>F</mi></math></span> is a torsion-free Birkhoff subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>. This allows us to study (higher) central extensions from categorical Galois theory in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> with respect to <span><math><mi>F</mi></math></span> and generalized Hopf formulae for homology.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
给定一个有限范畴 T,我们考虑函数范畴 AT,其中 A 可以是任何准阿贝尔范畴。准阿贝尔范畴的例子可以是任何无性范畴,也可以是非完全相加范畴,如无扭(-free)无性群、拓扑无性群、局部紧密无性群、巴拿赫空间和弗雷谢特空间等范畴。在这种情况下,A 中各种内部分类结构的范畴,如内部 n 折叠群的范畴,等价于合适范畴 T 的函子范畴 AT。我们将证明 F 是 AT 的无扭 Birkhoff 子类。这样,我们就可以研究 AT 中关于 F 的分类伽罗瓦理论的(高)中心扩展以及同调的广义霍普夫公式。
Galois theory and homology in quasi-abelian functor categories
Given a finite category , we consider the functor category , where can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in , such as the categories of internal n-fold groupoids, are equivalent to functor categories for a suitable category . For a replete full subcategory of , we define to be the full subcategory of whose objects are given by the functors with for all . We prove that is a torsion-free Birkhoff subcategory of . This allows us to study (higher) central extensions from categorical Galois theory in with respect to and generalized Hopf formulae for homology.