准阿贝尔函数范畴中的伽罗瓦理论和同源性

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.031
Nadja Egner
{"title":"准阿贝尔函数范畴中的伽罗瓦理论和同源性","authors":"Nadja Egner","doi":"10.1016/j.jalgebra.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>Given a finite category <span><math><mi>T</mi></math></span>, we consider the functor category <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <span><math><mi>A</mi></math></span> can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in <span><math><mi>A</mi></math></span>, such as the categories of internal <em>n</em>-fold groupoids, are equivalent to functor categories <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> for a suitable category <span><math><mi>T</mi></math></span>. For a replete full subcategory <span><math><mi>S</mi></math></span> of <span><math><mi>T</mi></math></span>, we define <span><math><mi>F</mi></math></span> to be the full subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> whose objects are given by the functors <span><math><mi>F</mi><mo>:</mo><mi>T</mi><mo>→</mo><mi>A</mi></math></span> with <span><math><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>T</mi><mo>∉</mo><mi>S</mi></math></span>. We prove that <span><math><mi>F</mi></math></span> is a torsion-free Birkhoff subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>. This allows us to study (higher) central extensions from categorical Galois theory in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> with respect to <span><math><mi>F</mi></math></span> and generalized Hopf formulae for homology.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois theory and homology in quasi-abelian functor categories\",\"authors\":\"Nadja Egner\",\"doi\":\"10.1016/j.jalgebra.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a finite category <span><math><mi>T</mi></math></span>, we consider the functor category <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <span><math><mi>A</mi></math></span> can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in <span><math><mi>A</mi></math></span>, such as the categories of internal <em>n</em>-fold groupoids, are equivalent to functor categories <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> for a suitable category <span><math><mi>T</mi></math></span>. For a replete full subcategory <span><math><mi>S</mi></math></span> of <span><math><mi>T</mi></math></span>, we define <span><math><mi>F</mi></math></span> to be the full subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> whose objects are given by the functors <span><math><mi>F</mi><mo>:</mo><mi>T</mi><mo>→</mo><mi>A</mi></math></span> with <span><math><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>T</mi><mo>∉</mo><mi>S</mi></math></span>. We prove that <span><math><mi>F</mi></math></span> is a torsion-free Birkhoff subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>. This allows us to study (higher) central extensions from categorical Galois theory in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> with respect to <span><math><mi>F</mi></math></span> and generalized Hopf formulae for homology.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有限范畴 T,我们考虑函数范畴 AT,其中 A 可以是任何准阿贝尔范畴。准阿贝尔范畴的例子可以是任何无性范畴,也可以是非完全相加范畴,如无扭(-free)无性群、拓扑无性群、局部紧密无性群、巴拿赫空间和弗雷谢特空间等范畴。在这种情况下,A 中各种内部分类结构的范畴,如内部 n 折叠群的范畴,等价于合适范畴 T 的函子范畴 AT。我们将证明 F 是 AT 的无扭 Birkhoff 子类。这样,我们就可以研究 AT 中关于 F 的分类伽罗瓦理论的(高)中心扩展以及同调的广义霍普夫公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Galois theory and homology in quasi-abelian functor categories
Given a finite category T, we consider the functor category AT, where A can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in A, such as the categories of internal n-fold groupoids, are equivalent to functor categories AT for a suitable category T. For a replete full subcategory S of T, we define F to be the full subcategory of AT whose objects are given by the functors F:TA with F(T)=0 for all TS. We prove that F is a torsion-free Birkhoff subcategory of AT. This allows us to study (higher) central extensions from categorical Galois theory in AT with respect to F and generalized Hopf formulae for homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信