压力对三元相图的影响:铋-锑-铅案例研究

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Peleg Lider, Shir Ben Shalom, Guy Makov
{"title":"压力对三元相图的影响:铋-锑-铅案例研究","authors":"Peleg Lider,&nbsp;Shir Ben Shalom,&nbsp;Guy Makov","doi":"10.1016/j.calphad.2024.102759","DOIUrl":null,"url":null,"abstract":"<div><div>Pressure can affect phase diagrams significantly, as previously demonstrated on several binary systems. However, the effect of pressure on ternary phase diagrams is mostly unexplored. In this study, a thermodynamic model of a ternary phase diagram under high pressure is formulated and applied to calculate the Bi-Sb-Pb system. The model employs binary interaction parameters and elemental thermodynamic functions to which the effect of pressure on the binary interaction parameters and elemental properties are added. The complete ternary Bi-Sb-Pb phase diagram was calculated up to a pressure of 2 GPa at selected temperatures as a case study, as this system involves three different types of binary phase diagrams: isomorphous, eutectic, and peritectic. The results show how pressure affects the stability of solid phases, leading to changes in the three-phase triangles and the four-phase equilibrium quadrilateral. This study provides insights into the pressure-dependent behavior of ternary systems and contributes to the thermodynamic understanding of ternary phase diagrams under high-pressure conditions.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102759"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure effect on ternary phase diagrams: Bi-Sb-Pb as a case study\",\"authors\":\"Peleg Lider,&nbsp;Shir Ben Shalom,&nbsp;Guy Makov\",\"doi\":\"10.1016/j.calphad.2024.102759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pressure can affect phase diagrams significantly, as previously demonstrated on several binary systems. However, the effect of pressure on ternary phase diagrams is mostly unexplored. In this study, a thermodynamic model of a ternary phase diagram under high pressure is formulated and applied to calculate the Bi-Sb-Pb system. The model employs binary interaction parameters and elemental thermodynamic functions to which the effect of pressure on the binary interaction parameters and elemental properties are added. The complete ternary Bi-Sb-Pb phase diagram was calculated up to a pressure of 2 GPa at selected temperatures as a case study, as this system involves three different types of binary phase diagrams: isomorphous, eutectic, and peritectic. The results show how pressure affects the stability of solid phases, leading to changes in the three-phase triangles and the four-phase equilibrium quadrilateral. This study provides insights into the pressure-dependent behavior of ternary systems and contributes to the thermodynamic understanding of ternary phase diagrams under high-pressure conditions.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"87 \",\"pages\":\"Article 102759\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591624001019\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624001019","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

压力会对相图产生重大影响,这一点已在多个二元体系中得到证实。然而,压力对三元相图的影响大多尚未得到研究。本研究建立了高压下三元相图的热力学模型,并将其应用于计算铋锑铅体系。该模型采用了二元相互作用参数和元素热力学函数,并加入了压力对二元相互作用参数和元素性质的影响。作为一个案例研究,计算了在选定温度下 2 GPa 压力下的完整三元铋锑铅相图,因为该体系涉及三种不同类型的二元相图:同构相图、共晶相图和共晶相图。研究结果表明了压力如何影响固相的稳定性,导致三相三角形和四相平衡四边形发生变化。这项研究深入揭示了三元体系随压力变化的行为,有助于从热力学角度理解高压条件下的三元相图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure effect on ternary phase diagrams: Bi-Sb-Pb as a case study
Pressure can affect phase diagrams significantly, as previously demonstrated on several binary systems. However, the effect of pressure on ternary phase diagrams is mostly unexplored. In this study, a thermodynamic model of a ternary phase diagram under high pressure is formulated and applied to calculate the Bi-Sb-Pb system. The model employs binary interaction parameters and elemental thermodynamic functions to which the effect of pressure on the binary interaction parameters and elemental properties are added. The complete ternary Bi-Sb-Pb phase diagram was calculated up to a pressure of 2 GPa at selected temperatures as a case study, as this system involves three different types of binary phase diagrams: isomorphous, eutectic, and peritectic. The results show how pressure affects the stability of solid phases, leading to changes in the three-phase triangles and the four-phase equilibrium quadrilateral. This study provides insights into the pressure-dependent behavior of ternary systems and contributes to the thermodynamic understanding of ternary phase diagrams under high-pressure conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信