Yingshuang Li , Lunche Wang , Qian Cao , Xihui Gu , Yunbo Lu , Yuhua Luo
{"title":"探索转型期矿业城市 \"现状-优化-调控 \"的适应性管理模式:中国黄石案例研究","authors":"Yingshuang Li , Lunche Wang , Qian Cao , Xihui Gu , Yunbo Lu , Yuhua Luo","doi":"10.1016/j.apgeog.2024.103438","DOIUrl":null,"url":null,"abstract":"<div><div>Mining cities face the challenges of ecological transformation and sustainable development after mineral depletion. Thus, ecological space optimization and adaptive management are pivotal after ecological restoration project, but easily neglected. Taking Huangshi in Hubei Province as an example, a top-down adaptive management model for regional mining ecological space integrating status-optimization-regulation (SOR) was established based on land system resilience (LSR) evaluation, circuit theory, complex network model and community discovery algorithm. The results showed that i) As the LSR increased, the land use structure shifted from non-ecological zones to forest and cropland, indicating that balancing agriculture and forest protection was crucial for increasing LSR in Huangshi. i) The ecological networks (ENs) of Huangshi had an irregular fishnet pattern, with densely intricate corridors in the south and broader, sparser ones in the north, and numerous ecological barriers near the mining area. Furthermore, the distribution of ecological sources and corridors displayed complementarity and hierarchy. iii) The optimized ENs exhibited higher connectivity and efficiency under disturbance, reducing corridor redundancy and migration costs. iv) The ENs clusters were classified into five types based on ecological connectivity: ecological buffer zone, priority restoration zone, moderate restoration zone, natural restoration zone, and moderate development zone, and tailored ecological regulatory strategies were proposed. The findings provide practice-oriented guidance for the sustainable development of mining cities, and offer a direct approach to support conscious, clear, and coherent adaptive management of ecological restoration in rapidly changing environments.</div></div>","PeriodicalId":48396,"journal":{"name":"Applied Geography","volume":"172 ","pages":"Article 103438"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring an adaptive management model for “status-optimization-regulation” of mining city in transition: A case study of Huangshi, China\",\"authors\":\"Yingshuang Li , Lunche Wang , Qian Cao , Xihui Gu , Yunbo Lu , Yuhua Luo\",\"doi\":\"10.1016/j.apgeog.2024.103438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mining cities face the challenges of ecological transformation and sustainable development after mineral depletion. Thus, ecological space optimization and adaptive management are pivotal after ecological restoration project, but easily neglected. Taking Huangshi in Hubei Province as an example, a top-down adaptive management model for regional mining ecological space integrating status-optimization-regulation (SOR) was established based on land system resilience (LSR) evaluation, circuit theory, complex network model and community discovery algorithm. The results showed that i) As the LSR increased, the land use structure shifted from non-ecological zones to forest and cropland, indicating that balancing agriculture and forest protection was crucial for increasing LSR in Huangshi. i) The ecological networks (ENs) of Huangshi had an irregular fishnet pattern, with densely intricate corridors in the south and broader, sparser ones in the north, and numerous ecological barriers near the mining area. Furthermore, the distribution of ecological sources and corridors displayed complementarity and hierarchy. iii) The optimized ENs exhibited higher connectivity and efficiency under disturbance, reducing corridor redundancy and migration costs. iv) The ENs clusters were classified into five types based on ecological connectivity: ecological buffer zone, priority restoration zone, moderate restoration zone, natural restoration zone, and moderate development zone, and tailored ecological regulatory strategies were proposed. The findings provide practice-oriented guidance for the sustainable development of mining cities, and offer a direct approach to support conscious, clear, and coherent adaptive management of ecological restoration in rapidly changing environments.</div></div>\",\"PeriodicalId\":48396,\"journal\":{\"name\":\"Applied Geography\",\"volume\":\"172 \",\"pages\":\"Article 103438\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143622824002431\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143622824002431","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Exploring an adaptive management model for “status-optimization-regulation” of mining city in transition: A case study of Huangshi, China
Mining cities face the challenges of ecological transformation and sustainable development after mineral depletion. Thus, ecological space optimization and adaptive management are pivotal after ecological restoration project, but easily neglected. Taking Huangshi in Hubei Province as an example, a top-down adaptive management model for regional mining ecological space integrating status-optimization-regulation (SOR) was established based on land system resilience (LSR) evaluation, circuit theory, complex network model and community discovery algorithm. The results showed that i) As the LSR increased, the land use structure shifted from non-ecological zones to forest and cropland, indicating that balancing agriculture and forest protection was crucial for increasing LSR in Huangshi. i) The ecological networks (ENs) of Huangshi had an irregular fishnet pattern, with densely intricate corridors in the south and broader, sparser ones in the north, and numerous ecological barriers near the mining area. Furthermore, the distribution of ecological sources and corridors displayed complementarity and hierarchy. iii) The optimized ENs exhibited higher connectivity and efficiency under disturbance, reducing corridor redundancy and migration costs. iv) The ENs clusters were classified into five types based on ecological connectivity: ecological buffer zone, priority restoration zone, moderate restoration zone, natural restoration zone, and moderate development zone, and tailored ecological regulatory strategies were proposed. The findings provide practice-oriented guidance for the sustainable development of mining cities, and offer a direct approach to support conscious, clear, and coherent adaptive management of ecological restoration in rapidly changing environments.
期刊介绍:
Applied Geography is a journal devoted to the publication of research which utilizes geographic approaches (human, physical, nature-society and GIScience) to resolve human problems that have a spatial dimension. These problems may be related to the assessment, management and allocation of the world physical and/or human resources. The underlying rationale of the journal is that only through a clear understanding of the relevant societal, physical, and coupled natural-humans systems can we resolve such problems. Papers are invited on any theme involving the application of geographical theory and methodology in the resolution of human problems.