Yunhong Deng , Sihong Shao , Alex Mogilner , Mingtao Xia
{"title":"无界域上的自适应双曲跨空间映射雅可比法及其在求解多维时空整微分方程中的应用","authors":"Yunhong Deng , Sihong Shao , Alex Mogilner , Mingtao Xia","doi":"10.1016/j.jcp.2024.113492","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a new adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method for solving multidimensional spatiotemporal integrodifferential equations in unbounded domains. By devising adaptive techniques for sparse mapped Jacobi spectral expansions defined in a hyperbolic cross space, our proposed AHMJ method can efficiently solve various spatiotemporal integrodifferential equations such as the anomalous diffusion model with reduced numbers of basis functions. Our analysis of the AHMJ method gives a uniform upper error bound for solving a class of spatiotemporal integrodifferential equations, leading to effective error control.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113492"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive hyperbolic-cross-space mapped Jacobi method on unbounded domains with applications to solving multidimensional spatiotemporal integrodifferential equations\",\"authors\":\"Yunhong Deng , Sihong Shao , Alex Mogilner , Mingtao Xia\",\"doi\":\"10.1016/j.jcp.2024.113492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we develop a new adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method for solving multidimensional spatiotemporal integrodifferential equations in unbounded domains. By devising adaptive techniques for sparse mapped Jacobi spectral expansions defined in a hyperbolic cross space, our proposed AHMJ method can efficiently solve various spatiotemporal integrodifferential equations such as the anomalous diffusion model with reduced numbers of basis functions. Our analysis of the AHMJ method gives a uniform upper error bound for solving a class of spatiotemporal integrodifferential equations, leading to effective error control.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113492\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002199912400740X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912400740X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Adaptive hyperbolic-cross-space mapped Jacobi method on unbounded domains with applications to solving multidimensional spatiotemporal integrodifferential equations
In this paper, we develop a new adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method for solving multidimensional spatiotemporal integrodifferential equations in unbounded domains. By devising adaptive techniques for sparse mapped Jacobi spectral expansions defined in a hyperbolic cross space, our proposed AHMJ method can efficiently solve various spatiotemporal integrodifferential equations such as the anomalous diffusion model with reduced numbers of basis functions. Our analysis of the AHMJ method gives a uniform upper error bound for solving a class of spatiotemporal integrodifferential equations, leading to effective error control.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.