{"title":"在资源分配中寻找稳健公平的解决方案","authors":"Özlem Karsu, İzzet Egemen Elver, Tuna Arda Kınık","doi":"10.1016/j.omega.2024.103208","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we consider resource allocation settings where the decisions affect multiple beneficiaries and the decision maker aims to ensure that the effect is distributed to the beneficiaries in an equitable manner. We specifically consider stochastic environments where there is uncertainty in the system and propose a robust programming approach that aims at maximizing system efficiency while guaranteeing an equitable benefit allocation even under the worst scenario. Acknowledging the fact that the robust solution may lead to high efficiency loss and may be over-conservative, we adopt a parametric approach that allows controlling the level of conservatism and present the decision maker alternative solutions that reveal the trade-off between efficiency and the degree of conservatism when incorporating fairness. We obtain tractable formulations, leveraging the results we provide on the properties of highly unfair allocations. We demonstrate the usability of our approach on project selection and shelter allocation applications.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"131 ","pages":"Article 103208"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding robustly fair solutions in resource allocation\",\"authors\":\"Özlem Karsu, İzzet Egemen Elver, Tuna Arda Kınık\",\"doi\":\"10.1016/j.omega.2024.103208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we consider resource allocation settings where the decisions affect multiple beneficiaries and the decision maker aims to ensure that the effect is distributed to the beneficiaries in an equitable manner. We specifically consider stochastic environments where there is uncertainty in the system and propose a robust programming approach that aims at maximizing system efficiency while guaranteeing an equitable benefit allocation even under the worst scenario. Acknowledging the fact that the robust solution may lead to high efficiency loss and may be over-conservative, we adopt a parametric approach that allows controlling the level of conservatism and present the decision maker alternative solutions that reveal the trade-off between efficiency and the degree of conservatism when incorporating fairness. We obtain tractable formulations, leveraging the results we provide on the properties of highly unfair allocations. We demonstrate the usability of our approach on project selection and shelter allocation applications.</div></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":\"131 \",\"pages\":\"Article 103208\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305048324001725\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048324001725","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Finding robustly fair solutions in resource allocation
In this study, we consider resource allocation settings where the decisions affect multiple beneficiaries and the decision maker aims to ensure that the effect is distributed to the beneficiaries in an equitable manner. We specifically consider stochastic environments where there is uncertainty in the system and propose a robust programming approach that aims at maximizing system efficiency while guaranteeing an equitable benefit allocation even under the worst scenario. Acknowledging the fact that the robust solution may lead to high efficiency loss and may be over-conservative, we adopt a parametric approach that allows controlling the level of conservatism and present the decision maker alternative solutions that reveal the trade-off between efficiency and the degree of conservatism when incorporating fairness. We obtain tractable formulations, leveraging the results we provide on the properties of highly unfair allocations. We demonstrate the usability of our approach on project selection and shelter allocation applications.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.