利用自适应 bonobo 优化器精确估算 PEM 燃料电池的关键参数

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ahmed Zouhir Kouache, Ahmed Djafour, Mohammed Bilal Danoune, Khaled Mohammed Said Benzaoui, Abdelmoumen Gougui
{"title":"利用自适应 bonobo 优化器精确估算 PEM 燃料电池的关键参数","authors":"Ahmed Zouhir Kouache,&nbsp;Ahmed Djafour,&nbsp;Mohammed Bilal Danoune,&nbsp;Khaled Mohammed Said Benzaoui,&nbsp;Abdelmoumen Gougui","doi":"10.1016/j.compchemeng.2024.108894","DOIUrl":null,"url":null,"abstract":"<div><div>The present study introduces an efficient Self-Adaptive Bonobo Optimizer (SaBO) for identifying the unknown parameters of the proton exchange membrane fuel cell (PEMFC). A comparative analysis between recent robust approaches, such as Gradient-based Optimizer (GBO), Bald Eagle Search Algorithm, and Rime-Ice algorithm (RIME), has been introduced. The basic concept is to minimize the mean bias error between the measured and predicted stack voltage. The main results show that although the techniques were close, in contrast, the SaBO optimizer provides a better superiority than GBO, BES, and RIME for an optimum forecast of the PEMFCs model. Moreover, the best fitness was achieved with the SaBO at 0.0367 (V) for the Heliocentris FC-50, and 0.1150 (V) for Nexa® 1200, also, with the minimum deviation of 0.0027 &amp; 0.0172, and high efficiency. These achievements denote that the SaBO algorithm is more stable and robust for PEMFC parameter estimation.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108894"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate key parameters estimation of PEM fuel cells using self-adaptive bonobo optimizer\",\"authors\":\"Ahmed Zouhir Kouache,&nbsp;Ahmed Djafour,&nbsp;Mohammed Bilal Danoune,&nbsp;Khaled Mohammed Said Benzaoui,&nbsp;Abdelmoumen Gougui\",\"doi\":\"10.1016/j.compchemeng.2024.108894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study introduces an efficient Self-Adaptive Bonobo Optimizer (SaBO) for identifying the unknown parameters of the proton exchange membrane fuel cell (PEMFC). A comparative analysis between recent robust approaches, such as Gradient-based Optimizer (GBO), Bald Eagle Search Algorithm, and Rime-Ice algorithm (RIME), has been introduced. The basic concept is to minimize the mean bias error between the measured and predicted stack voltage. The main results show that although the techniques were close, in contrast, the SaBO optimizer provides a better superiority than GBO, BES, and RIME for an optimum forecast of the PEMFCs model. Moreover, the best fitness was achieved with the SaBO at 0.0367 (V) for the Heliocentris FC-50, and 0.1150 (V) for Nexa® 1200, also, with the minimum deviation of 0.0027 &amp; 0.0172, and high efficiency. These achievements denote that the SaBO algorithm is more stable and robust for PEMFC parameter estimation.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108894\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003120\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003120","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种高效的自适应 Bonobo 优化器(SaBO),用于识别质子交换膜燃料电池(PEMFC)的未知参数。本研究还介绍了对基于梯度的优化器 (GBO)、秃鹰搜索算法和 Rime-Ice 算法 (RIME) 等最新稳健方法的比较分析。其基本概念是尽量减小测量和预测堆栈电压之间的平均偏置误差。主要结果表明,虽然这些技术很接近,但相比之下,SaBO 优化器在 PEMFCs 模型的最佳预测方面比 GBO、BES 和 RIME 更优越。此外,SaBO 在 Heliocentris FC-50 和 Nexa® 1200 上分别达到了 0.0367 (V) 和 0.1150 (V)的最佳适配度,而且偏差最小分别为 0.0027 & 0.0172,效率很高。这些结果表明,SaBO 算法在 PEMFC 参数估计方面具有更高的稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate key parameters estimation of PEM fuel cells using self-adaptive bonobo optimizer
The present study introduces an efficient Self-Adaptive Bonobo Optimizer (SaBO) for identifying the unknown parameters of the proton exchange membrane fuel cell (PEMFC). A comparative analysis between recent robust approaches, such as Gradient-based Optimizer (GBO), Bald Eagle Search Algorithm, and Rime-Ice algorithm (RIME), has been introduced. The basic concept is to minimize the mean bias error between the measured and predicted stack voltage. The main results show that although the techniques were close, in contrast, the SaBO optimizer provides a better superiority than GBO, BES, and RIME for an optimum forecast of the PEMFCs model. Moreover, the best fitness was achieved with the SaBO at 0.0367 (V) for the Heliocentris FC-50, and 0.1150 (V) for Nexa® 1200, also, with the minimum deviation of 0.0027 & 0.0172, and high efficiency. These achievements denote that the SaBO algorithm is more stable and robust for PEMFC parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信