限定投影超曲面奇点

IF 1.5 1区 数学 Q1 MATHEMATICS
Ben Castor
{"title":"限定投影超曲面奇点","authors":"Ben Castor","doi":"10.1016/j.aim.2024.109970","DOIUrl":null,"url":null,"abstract":"<div><div>We compare several different methods involving Hodge-theoretic spectra of singularities which produce constraints on the number and type of isolated singularities on a projective hypersurface of fixed degree. In particular, we introduce a method based on the spectrum of the nonisolated singularity at the origin of the affine cone on such a hypersurface, and relate the resulting explicit formula to Varchenko's bound.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109970"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding projective hypersurface singularities\",\"authors\":\"Ben Castor\",\"doi\":\"10.1016/j.aim.2024.109970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We compare several different methods involving Hodge-theoretic spectra of singularities which produce constraints on the number and type of isolated singularities on a projective hypersurface of fixed degree. In particular, we introduce a method based on the spectrum of the nonisolated singularity at the origin of the affine cone on such a hypersurface, and relate the resulting explicit formula to Varchenko's bound.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109970\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004857\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004857","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们比较了涉及奇点霍奇理论谱的几种不同方法,这些方法对固定度的投影超曲面上孤立奇点的数量和类型产生了约束。特别是,我们引入了一种基于这种超曲面上仿射锥原点处非孤立奇点谱的方法,并将由此得到的显式公式与瓦尔琴科约束联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding projective hypersurface singularities
We compare several different methods involving Hodge-theoretic spectra of singularities which produce constraints on the number and type of isolated singularities on a projective hypersurface of fixed degree. In particular, we introduce a method based on the spectrum of the nonisolated singularity at the origin of the affine cone on such a hypersurface, and relate the resulting explicit formula to Varchenko's bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信