{"title":"具有有限系数的高等周群与精制无ramified同调","authors":"Kees Kok , Lin Zhou","doi":"10.1016/j.aim.2024.109972","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we show that Bloch's higher cycle class map with finite coefficients for quasi-projective equi-dimensional schemes over a field fits naturally in a long exact sequence involving Schreieder's refined unramified cohomology. We also show that the refined unramified cohomology satisfies the localization sequence. Using this we conjecture in the end that refined unramified cohomology is a motivic homology theory and explain how this is related to the aforementioned results.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109972"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Chow groups with finite coefficients and refined unramified cohomology\",\"authors\":\"Kees Kok , Lin Zhou\",\"doi\":\"10.1016/j.aim.2024.109972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we show that Bloch's higher cycle class map with finite coefficients for quasi-projective equi-dimensional schemes over a field fits naturally in a long exact sequence involving Schreieder's refined unramified cohomology. We also show that the refined unramified cohomology satisfies the localization sequence. Using this we conjecture in the end that refined unramified cohomology is a motivic homology theory and explain how this is related to the aforementioned results.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109972\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004870\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004870","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Higher Chow groups with finite coefficients and refined unramified cohomology
In this paper we show that Bloch's higher cycle class map with finite coefficients for quasi-projective equi-dimensional schemes over a field fits naturally in a long exact sequence involving Schreieder's refined unramified cohomology. We also show that the refined unramified cohomology satisfies the localization sequence. Using this we conjecture in the end that refined unramified cohomology is a motivic homology theory and explain how this is related to the aforementioned results.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.