{"title":"具有足够多积分的弱乘数霍普夫数组的对偶性","authors":"Alfons Van Daele , Shuanhong Wang","doi":"10.1016/j.aim.2024.109971","DOIUrl":null,"url":null,"abstract":"<div><div>We study duality of regular weak multiplier Hopf algebras with sufficiently many integrals. This generalizes the well-known duality of algebraic quantum groups. We need to modify the definition of an integral in this case. It is no longer true that an integral is automatically faithful and unique. Therefore we have to work with a faithful set of integrals. We apply the theory to three cases and give some examples. First we have the two weak multiplier Hopf algebras associated with an infinite groupoid (a small category). Related we answer a question posed by Nicolás Andruskiewitsch about double groupoids. Finally, we also discuss the weak multiplier Hopf algebras associated to a separability idempotent.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109971"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality for weak multiplier Hopf algebras with sufficiently many integrals\",\"authors\":\"Alfons Van Daele , Shuanhong Wang\",\"doi\":\"10.1016/j.aim.2024.109971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study duality of regular weak multiplier Hopf algebras with sufficiently many integrals. This generalizes the well-known duality of algebraic quantum groups. We need to modify the definition of an integral in this case. It is no longer true that an integral is automatically faithful and unique. Therefore we have to work with a faithful set of integrals. We apply the theory to three cases and give some examples. First we have the two weak multiplier Hopf algebras associated with an infinite groupoid (a small category). Related we answer a question posed by Nicolás Andruskiewitsch about double groupoids. Finally, we also discuss the weak multiplier Hopf algebras associated to a separability idempotent.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109971\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004869\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004869","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Duality for weak multiplier Hopf algebras with sufficiently many integrals
We study duality of regular weak multiplier Hopf algebras with sufficiently many integrals. This generalizes the well-known duality of algebraic quantum groups. We need to modify the definition of an integral in this case. It is no longer true that an integral is automatically faithful and unique. Therefore we have to work with a faithful set of integrals. We apply the theory to three cases and give some examples. First we have the two weak multiplier Hopf algebras associated with an infinite groupoid (a small category). Related we answer a question posed by Nicolás Andruskiewitsch about double groupoids. Finally, we also discuss the weak multiplier Hopf algebras associated to a separability idempotent.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.