{"title":"LTFM:采用松散耦合策略的矿物光谱识别长尾少拍模块","authors":"Youpeng Fan , Yongchun Fang","doi":"10.1016/j.chemolab.2024.105247","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, deep learning methods have exhibited superior performance in mineral identification when especially compared with conventional machine learning methods such as Support Vector Machine (SVM) and Partial Least Squares (PLS). Nevertheless, almost all of these deep learning methods pay more attention to improving and designing network structures, while neglecting the phenomenon of long-tail distribution in spectral data due to the inconsistency of ore distribution and the scarcity of several natural minerals. To alleviate the interference of majority categories on minority categories, we propose <strong>L</strong>ong-<strong>T</strong>ail <strong>F</strong>ew-shot <strong>M</strong>odule (LTFM) which is inspired by rethinking the fashionable decoupling strategy that conducts primary representation learning and further classifier retrained on mineral spectral data. In particular, LTFM serves as a multi-expert mode, where these experts are respectively specialized in improving feature representation learning, mitigating the long-tail effect, and alleviating the interference of few shots. Additionally, the loose coupling learning strategy is introduced to facilitate primary representation learning and the subsequent additional experts to inherit this knowledge. Experiments on two publicly available spectral datasets show that the proposed LTFM significantly outperforms existing methods. In the end, extensive ablation studies are conducted to investigate the effectiveness, correctness, and robustness of our proposal.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"254 ","pages":"Article 105247"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LTFM: Long-tail few-shot module with loose coupling strategy for mineral spectral identification\",\"authors\":\"Youpeng Fan , Yongchun Fang\",\"doi\":\"10.1016/j.chemolab.2024.105247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, deep learning methods have exhibited superior performance in mineral identification when especially compared with conventional machine learning methods such as Support Vector Machine (SVM) and Partial Least Squares (PLS). Nevertheless, almost all of these deep learning methods pay more attention to improving and designing network structures, while neglecting the phenomenon of long-tail distribution in spectral data due to the inconsistency of ore distribution and the scarcity of several natural minerals. To alleviate the interference of majority categories on minority categories, we propose <strong>L</strong>ong-<strong>T</strong>ail <strong>F</strong>ew-shot <strong>M</strong>odule (LTFM) which is inspired by rethinking the fashionable decoupling strategy that conducts primary representation learning and further classifier retrained on mineral spectral data. In particular, LTFM serves as a multi-expert mode, where these experts are respectively specialized in improving feature representation learning, mitigating the long-tail effect, and alleviating the interference of few shots. Additionally, the loose coupling learning strategy is introduced to facilitate primary representation learning and the subsequent additional experts to inherit this knowledge. Experiments on two publicly available spectral datasets show that the proposed LTFM significantly outperforms existing methods. In the end, extensive ablation studies are conducted to investigate the effectiveness, correctness, and robustness of our proposal.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"254 \",\"pages\":\"Article 105247\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001874\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001874","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
LTFM: Long-tail few-shot module with loose coupling strategy for mineral spectral identification
In recent years, deep learning methods have exhibited superior performance in mineral identification when especially compared with conventional machine learning methods such as Support Vector Machine (SVM) and Partial Least Squares (PLS). Nevertheless, almost all of these deep learning methods pay more attention to improving and designing network structures, while neglecting the phenomenon of long-tail distribution in spectral data due to the inconsistency of ore distribution and the scarcity of several natural minerals. To alleviate the interference of majority categories on minority categories, we propose Long-Tail Few-shot Module (LTFM) which is inspired by rethinking the fashionable decoupling strategy that conducts primary representation learning and further classifier retrained on mineral spectral data. In particular, LTFM serves as a multi-expert mode, where these experts are respectively specialized in improving feature representation learning, mitigating the long-tail effect, and alleviating the interference of few shots. Additionally, the loose coupling learning strategy is introduced to facilitate primary representation learning and the subsequent additional experts to inherit this knowledge. Experiments on two publicly available spectral datasets show that the proposed LTFM significantly outperforms existing methods. In the end, extensive ablation studies are conducted to investigate the effectiveness, correctness, and robustness of our proposal.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.