MicroSim:基于 CPU 和 GPU 实现的高性能相场求解器

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tanmay Dutta , Dasari Mohan , Saurav Shenoy , Nasir Attar , Abhishek Kalokhe , Ajay Sagar , Swapnil Bhure , Swaroop S. Pradhan , Jitendriya Praharaj , Subham Mridha , Anshika Kushwaha , Vaishali Shah , M.P. Gururajan , V. Venkatesh Shenoi , Gandham Phanikumar , Saswata Bhattacharyya , Abhik Choudhury
{"title":"MicroSim:基于 CPU 和 GPU 实现的高性能相场求解器","authors":"Tanmay Dutta ,&nbsp;Dasari Mohan ,&nbsp;Saurav Shenoy ,&nbsp;Nasir Attar ,&nbsp;Abhishek Kalokhe ,&nbsp;Ajay Sagar ,&nbsp;Swapnil Bhure ,&nbsp;Swaroop S. Pradhan ,&nbsp;Jitendriya Praharaj ,&nbsp;Subham Mridha ,&nbsp;Anshika Kushwaha ,&nbsp;Vaishali Shah ,&nbsp;M.P. Gururajan ,&nbsp;V. Venkatesh Shenoi ,&nbsp;Gandham Phanikumar ,&nbsp;Saswata Bhattacharyya ,&nbsp;Abhik Choudhury","doi":"10.1016/j.commatsci.2024.113438","DOIUrl":null,"url":null,"abstract":"<div><div>The phase-field method has become a useful tool for the simulation of classical metallurgical phase transformations as well as other phenomena related to materials science. The thermodynamic consistency that forms the basis of these formulations lends to its strong predictive capabilities and utility. However, a strong impediment to the usage of the method for typical applied problems of industrial and academic relevance is the significant overhead with regard to the code development and know-how required for quantitative model formulations. In this paper, we report the development of an open-source phase-field software stack that contains generic formulations for the simulation of multiphase and multi-component phase transformations. The solvers incorporate thermodynamic coupling that allows the realization of simulations with real alloys in scenarios directly relevant to the materials industry. Further, the solvers utilize parallelization strategies using either multiple CPUs or GPUs to provide cross-platform portability and usability on available supercomputing machines. Finally, the solver stack also contains a graphical user interface to gradually introduce the usage of the software. The user interface also provides a collection of post-processing tools that allow the estimation of useful metrics related to microstructural evolution.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113438"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroSim: A high-performance phase-field solver based on CPU and GPU implementations\",\"authors\":\"Tanmay Dutta ,&nbsp;Dasari Mohan ,&nbsp;Saurav Shenoy ,&nbsp;Nasir Attar ,&nbsp;Abhishek Kalokhe ,&nbsp;Ajay Sagar ,&nbsp;Swapnil Bhure ,&nbsp;Swaroop S. Pradhan ,&nbsp;Jitendriya Praharaj ,&nbsp;Subham Mridha ,&nbsp;Anshika Kushwaha ,&nbsp;Vaishali Shah ,&nbsp;M.P. Gururajan ,&nbsp;V. Venkatesh Shenoi ,&nbsp;Gandham Phanikumar ,&nbsp;Saswata Bhattacharyya ,&nbsp;Abhik Choudhury\",\"doi\":\"10.1016/j.commatsci.2024.113438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The phase-field method has become a useful tool for the simulation of classical metallurgical phase transformations as well as other phenomena related to materials science. The thermodynamic consistency that forms the basis of these formulations lends to its strong predictive capabilities and utility. However, a strong impediment to the usage of the method for typical applied problems of industrial and academic relevance is the significant overhead with regard to the code development and know-how required for quantitative model formulations. In this paper, we report the development of an open-source phase-field software stack that contains generic formulations for the simulation of multiphase and multi-component phase transformations. The solvers incorporate thermodynamic coupling that allows the realization of simulations with real alloys in scenarios directly relevant to the materials industry. Further, the solvers utilize parallelization strategies using either multiple CPUs or GPUs to provide cross-platform portability and usability on available supercomputing machines. Finally, the solver stack also contains a graphical user interface to gradually introduce the usage of the software. The user interface also provides a collection of post-processing tools that allow the estimation of useful metrics related to microstructural evolution.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"246 \",\"pages\":\"Article 113438\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624006591\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006591","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

相场法已成为模拟经典冶金相变以及与材料科学相关的其他现象的有用工具。构成这些公式基础的热力学一致性使其具有很强的预测能力和实用性。然而,将该方法用于解决工业和学术界相关的典型应用问题的一个重大障碍是,定量模型公式化所需的代码开发和技术诀窍方面的巨大开销。在本文中,我们报告了开源相场软件栈的开发情况,该软件栈包含用于模拟多相和多组分相变的通用公式。求解器包含热力学耦合,可在与材料行业直接相关的场景中使用真实合金实现模拟。此外,求解器采用并行化策略,使用多个 CPU 或 GPU,提供跨平台可移植性,并可在现有的超级计算机上使用。最后,求解器堆栈还包含一个图形用户界面,用于逐步介绍软件的使用方法。用户界面还提供了一系列后处理工具,可以估算与微结构演变相关的有用指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MicroSim: A high-performance phase-field solver based on CPU and GPU implementations

MicroSim: A high-performance phase-field solver based on CPU and GPU implementations
The phase-field method has become a useful tool for the simulation of classical metallurgical phase transformations as well as other phenomena related to materials science. The thermodynamic consistency that forms the basis of these formulations lends to its strong predictive capabilities and utility. However, a strong impediment to the usage of the method for typical applied problems of industrial and academic relevance is the significant overhead with regard to the code development and know-how required for quantitative model formulations. In this paper, we report the development of an open-source phase-field software stack that contains generic formulations for the simulation of multiphase and multi-component phase transformations. The solvers incorporate thermodynamic coupling that allows the realization of simulations with real alloys in scenarios directly relevant to the materials industry. Further, the solvers utilize parallelization strategies using either multiple CPUs or GPUs to provide cross-platform portability and usability on available supercomputing machines. Finally, the solver stack also contains a graphical user interface to gradually introduce the usage of the software. The user interface also provides a collection of post-processing tools that allow the estimation of useful metrics related to microstructural evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信