独立包装方格

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Wei Wu , Hiroki Numaguchi , Nir Halman , Yannan Hu , Mutsunori Yagiura
{"title":"独立包装方格","authors":"Wei Wu ,&nbsp;Hiroki Numaguchi ,&nbsp;Nir Halman ,&nbsp;Yannan Hu ,&nbsp;Mutsunori Yagiura","doi":"10.1016/j.tcs.2024.114910","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set of squares and a strip with bounded width and infinite height, we consider a square strip packaging problem, which we call the square independent packing problem (SIPP), to minimize the strip height so that all the squares are packed into independent cells separated by horizontal and vertical partitions. For the SIPP, we first investigate efficient solution representations and propose a compact representation that reduces the search space from <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>!</mo><mo>)</mo></math></span> to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, with <em>n</em> the number of given squares, while guaranteeing that there exists a solution representation that corresponds to an optimal solution. Based on the solution representation, we show that the problem is <span><math><mi>NP</mi></math></span>-hard. To solve the SIPP, we propose a dynamic programming method that can be extended to a fully polynomial-time approximation scheme (FPTAS). We also propose three mathematical programming formulations based on different solution representations and confirm their performance through computational experiments with a mathematical programming solver. Finally, we discuss several extensions that are relevant to practical applications.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114910"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing squares independently\",\"authors\":\"Wei Wu ,&nbsp;Hiroki Numaguchi ,&nbsp;Nir Halman ,&nbsp;Yannan Hu ,&nbsp;Mutsunori Yagiura\",\"doi\":\"10.1016/j.tcs.2024.114910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a set of squares and a strip with bounded width and infinite height, we consider a square strip packaging problem, which we call the square independent packing problem (SIPP), to minimize the strip height so that all the squares are packed into independent cells separated by horizontal and vertical partitions. For the SIPP, we first investigate efficient solution representations and propose a compact representation that reduces the search space from <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>!</mo><mo>)</mo></math></span> to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, with <em>n</em> the number of given squares, while guaranteeing that there exists a solution representation that corresponds to an optimal solution. Based on the solution representation, we show that the problem is <span><math><mi>NP</mi></math></span>-hard. To solve the SIPP, we propose a dynamic programming method that can be extended to a fully polynomial-time approximation scheme (FPTAS). We also propose three mathematical programming formulations based on different solution representations and confirm their performance through computational experiments with a mathematical programming solver. Finally, we discuss several extensions that are relevant to practical applications.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1024 \",\"pages\":\"Article 114910\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005279\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005279","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

给定一组正方形和一条宽度有界、高度无限的长条,我们考虑了一个正方形长条包装问题,我们称之为正方形独立包装问题(SIPP),即最大限度地降低长条高度,从而将所有正方形包装成由水平和垂直分区隔开的独立单元。对于 SIPP,我们首先研究了高效的解表示法,并提出了一种紧凑的表示法,它能将搜索空间从 Ω(n!) 缩小到 O(2n)(n 为给定方格数),同时保证存在与最优解相对应的解表示法。基于求解表示,我们证明了该问题的 NP 难度。为解决 SIPP 问题,我们提出了一种动态编程方法,该方法可扩展为全多项式时间逼近方案(FPTAS)。我们还提出了基于不同解法表示的三种数学编程公式,并通过数学编程求解器的计算实验证实了它们的性能。最后,我们讨论了与实际应用相关的几个扩展方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Packing squares independently
Given a set of squares and a strip with bounded width and infinite height, we consider a square strip packaging problem, which we call the square independent packing problem (SIPP), to minimize the strip height so that all the squares are packed into independent cells separated by horizontal and vertical partitions. For the SIPP, we first investigate efficient solution representations and propose a compact representation that reduces the search space from Ω(n!) to O(2n), with n the number of given squares, while guaranteeing that there exists a solution representation that corresponds to an optimal solution. Based on the solution representation, we show that the problem is NP-hard. To solve the SIPP, we propose a dynamic programming method that can be extended to a fully polynomial-time approximation scheme (FPTAS). We also propose three mathematical programming formulations based on different solution representations and confirm their performance through computational experiments with a mathematical programming solver. Finally, we discuss several extensions that are relevant to practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信