基于知识抽象和过滤的医疗保健领域异构数据视图联合学习

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Anshul Thakur, Soheila Molaei, Pafue Christy Nganjimi, Andrew Soltan, Patrick Schwab, Kim Branson, David A. Clifton
{"title":"基于知识抽象和过滤的医疗保健领域异构数据视图联合学习","authors":"Anshul Thakur, Soheila Molaei, Pafue Christy Nganjimi, Andrew Soltan, Patrick Schwab, Kim Branson, David A. Clifton","doi":"10.1038/s41746-024-01272-9","DOIUrl":null,"url":null,"abstract":"Robust data privacy regulations hinder the exchange of healthcare data among institutions, crucial for global insights and developing generalised clinical models. Federated learning (FL) is ideal for training global models using datasets from different institutions without compromising privacy. However, disparities in electronic healthcare records (EHRs) lead to inconsistencies in ML-ready data views, making FL challenging without extensive preprocessing and information loss. These differences arise from variations in services, care standards, and record-keeping practices. This paper addresses data view heterogeneity by introducing a knowledge abstraction and filtering-based FL framework that allows FL over heterogeneous data views without manual alignment or information loss. The knowledge abstraction and filtering mechanism maps raw input representations to a unified, semantically rich shared space for effective global model training. Experiments on three healthcare datasets demonstrate the framework’s effectiveness in overcoming data view heterogeneity and facilitating information sharing in a federated setup.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01272-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Knowledge abstraction and filtering based federated learning over heterogeneous data views in healthcare\",\"authors\":\"Anshul Thakur, Soheila Molaei, Pafue Christy Nganjimi, Andrew Soltan, Patrick Schwab, Kim Branson, David A. Clifton\",\"doi\":\"10.1038/s41746-024-01272-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust data privacy regulations hinder the exchange of healthcare data among institutions, crucial for global insights and developing generalised clinical models. Federated learning (FL) is ideal for training global models using datasets from different institutions without compromising privacy. However, disparities in electronic healthcare records (EHRs) lead to inconsistencies in ML-ready data views, making FL challenging without extensive preprocessing and information loss. These differences arise from variations in services, care standards, and record-keeping practices. This paper addresses data view heterogeneity by introducing a knowledge abstraction and filtering-based FL framework that allows FL over heterogeneous data views without manual alignment or information loss. The knowledge abstraction and filtering mechanism maps raw input representations to a unified, semantically rich shared space for effective global model training. Experiments on three healthcare datasets demonstrate the framework’s effectiveness in overcoming data view heterogeneity and facilitating information sharing in a federated setup.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01272-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01272-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01272-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

严格的数据隐私法规阻碍了医疗机构之间的数据交换,而数据交换对于了解全球情况和开发通用临床模型至关重要。联盟学习(FL)是在不损害隐私的情况下使用来自不同机构的数据集训练全球模型的理想选择。然而,电子医疗记录(EHR)的差异导致了 ML 就绪数据视图的不一致性,使得联合学习在没有大量预处理和信息丢失的情况下具有挑战性。这些差异源于服务、护理标准和记录保存实践的不同。本文通过引入基于知识抽象和过滤的 FL 框架来解决数据视图异构问题,该框架允许在异构数据视图上进行 FL,而无需手动调整或信息丢失。知识抽象和过滤机制将原始输入表征映射到统一的、语义丰富的共享空间,从而实现有效的全局模型训练。在三个医疗数据集上的实验证明了该框架在克服数据视图异构性和促进联合设置中的信息共享方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Knowledge abstraction and filtering based federated learning over heterogeneous data views in healthcare

Knowledge abstraction and filtering based federated learning over heterogeneous data views in healthcare

Knowledge abstraction and filtering based federated learning over heterogeneous data views in healthcare
Robust data privacy regulations hinder the exchange of healthcare data among institutions, crucial for global insights and developing generalised clinical models. Federated learning (FL) is ideal for training global models using datasets from different institutions without compromising privacy. However, disparities in electronic healthcare records (EHRs) lead to inconsistencies in ML-ready data views, making FL challenging without extensive preprocessing and information loss. These differences arise from variations in services, care standards, and record-keeping practices. This paper addresses data view heterogeneity by introducing a knowledge abstraction and filtering-based FL framework that allows FL over heterogeneous data views without manual alignment or information loss. The knowledge abstraction and filtering mechanism maps raw input representations to a unified, semantically rich shared space for effective global model training. Experiments on three healthcare datasets demonstrate the framework’s effectiveness in overcoming data view heterogeneity and facilitating information sharing in a federated setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信