对 SARS-CoV-2 受体结合域突变体进行高通量分子模拟,量化动态波动与蛋白质表达之间的相关性

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Victor Ovchinnikov, Martin Karplus
{"title":"对 SARS-CoV-2 受体结合域突变体进行高通量分子模拟,量化动态波动与蛋白质表达之间的相关性","authors":"Victor Ovchinnikov, Martin Karplus","doi":"10.1002/jcc.27512","DOIUrl":null,"url":null,"abstract":"Prediction of protein fitness from computational modeling is an area of active research in rational protein design. Here, we investigated whether protein fluctuations computed from molecular dynamics simulations can be used to predict the expression levels of SARS‐CoV‐2 receptor binding domain (RBD) mutants determined in the deep mutational scanning experiment of Starr <jats:italic>et al.</jats:italic> [<jats:italic>Science</jats:italic> (New York, N.Y.) 2022, <jats:italic>377</jats:italic>, 420] Specifically, we performed more than 0.7 milliseconds of molecular dynamics (MD) simulations of 557 mutant RBDs in triplicate to achieve statistical significance under various simulation conditions. Our results show modest but significant anticorrelation in the range [−0.4, −0.3] between expression and RBD protein flexibility. A simple linear regression machine learning model achieved correlation coefficients in the range [0.7, 0.8], thus outperforming MD‐based models, but required about 25 mutations at each residue position for training.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐throughput molecular simulations of SARS‐CoV‐2 receptor binding domain mutants quantify correlations between dynamic fluctuations and protein expression\",\"authors\":\"Victor Ovchinnikov, Martin Karplus\",\"doi\":\"10.1002/jcc.27512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of protein fitness from computational modeling is an area of active research in rational protein design. Here, we investigated whether protein fluctuations computed from molecular dynamics simulations can be used to predict the expression levels of SARS‐CoV‐2 receptor binding domain (RBD) mutants determined in the deep mutational scanning experiment of Starr <jats:italic>et al.</jats:italic> [<jats:italic>Science</jats:italic> (New York, N.Y.) 2022, <jats:italic>377</jats:italic>, 420] Specifically, we performed more than 0.7 milliseconds of molecular dynamics (MD) simulations of 557 mutant RBDs in triplicate to achieve statistical significance under various simulation conditions. Our results show modest but significant anticorrelation in the range [−0.4, −0.3] between expression and RBD protein flexibility. A simple linear regression machine learning model achieved correlation coefficients in the range [0.7, 0.8], thus outperforming MD‐based models, but required about 25 mutations at each residue position for training.\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/jcc.27512\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.27512","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过计算建模预测蛋白质的适应性是合理蛋白质设计中一个活跃的研究领域。在这里,我们研究了分子动力学模拟计算出的蛋白质波动是否可用于预测在 Starr 等人的深度突变扫描实验中确定的 SARS-CoV-2 受体结合结构域(RBD)突变体的表达水平 [Science (New York, N.Y.) 2022, 377, 420] 具体来说,我们对 557 个突变 RBDs 进行了超过 0.7 毫秒的分子动力学(MD)模拟,一式三份,以在各种模拟条件下达到统计学意义。我们的结果表明,表达与 RBD 蛋白灵活性之间的反相关性不大,但在[-0.4, -0.3]范围内具有显著性。一个简单的线性回归机器学习模型达到了[0.7, 0.8]范围内的相关系数,从而优于基于 MD 的模型,但每个残基位置需要约 25 个突变进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High‐throughput molecular simulations of SARS‐CoV‐2 receptor binding domain mutants quantify correlations between dynamic fluctuations and protein expression
Prediction of protein fitness from computational modeling is an area of active research in rational protein design. Here, we investigated whether protein fluctuations computed from molecular dynamics simulations can be used to predict the expression levels of SARS‐CoV‐2 receptor binding domain (RBD) mutants determined in the deep mutational scanning experiment of Starr et al. [Science (New York, N.Y.) 2022, 377, 420] Specifically, we performed more than 0.7 milliseconds of molecular dynamics (MD) simulations of 557 mutant RBDs in triplicate to achieve statistical significance under various simulation conditions. Our results show modest but significant anticorrelation in the range [−0.4, −0.3] between expression and RBD protein flexibility. A simple linear regression machine learning model achieved correlation coefficients in the range [0.7, 0.8], thus outperforming MD‐based models, but required about 25 mutations at each residue position for training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信